XX GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN
 The correspondence round

Below is the list of problems for the first (correspondence) round of the XX Sharygin Geometrical Olympiad.

The olympiad is intended for high-school students of four eldest grades. In Russian school, these are 8-11. In the list below, each problem is indicated by the numbers of Russian school grades, for which it is intended. Foreign students of the last grade (at the start of the correspondence round) have to solve the problems for 11th grade, students of the preceding grade solve the problems for 10th grade etc. However, the participants may solve problems for elder grades as well (solutions of problems for younger grades will not be considered).

A complete solution of each problem costs 7 points. A partial solution costs from 1 to 6 points. A text without significant advancement costs 0 points. The result of a participant is the sum of all obtained marks.

First write down the statement of the problem, and then the solution. Present your solutions in detail, including all necessary arguments and calculations. Provide all necessary figures of sufficient size. If a problem has an explicit answer, this answer must be presented distinctly. Please, be accurate to provide good understanding and correct estimating of your work!

If your solution depends on some well-known theorems from standard textbooks, you may simply refer to them instead of providing their proofs. However, any fact not from the standard curriculum should be either proved or properly referred (with an indication of the source).

You may note the problems which you liked most (this is not obligatory). Your opinion is interesting for the Jury.

The solutions for the problems (in Russian or in English) must be delivered not before December 1, 2023 and not later than on March 1, 2024. To upload your work, enter the site https://contest.yandex.ru/geomshar/, indicate the language (English) in the right upper part of the page, press «Registration» in the left upper part, and follow the instructions.

Attention:

1. The solution of each problem (and of each part of it if any) must be contained in a separate pdf, doc, docx or jpg file. If the solution is contained in several files then pack them to an archive (zip or rar) and load it.
2. We recommend to prepare the paper using computer or to scan it rather than to photograph it. In all cases, please check readability of the file before uploading.
3. If you upload the solution of some problem more than once then only the last version is retained in the checking system. Thus if you need to change something in your solution then you have to upload the whole solution again.
4. After uploading, \log in to the server, open the loaded file and check its correctness.

If you have any technical problems with uploading of the work, apply to geomshar@yandex.ru (DON'T SEND your work to this address).

The final round will be held in July-August 2024 in Moscow region. The winners of the correspondence round are invited to it if they don't graduate from school before the round. The cutoff is determined after the examination of the papers of the correspondence round according to the number of participants with any given score. The graduates who are winners of the correspondence round will be awarded by diplomas of the Olympiad. The list of the winners
will be published on www.geometry.ru up to June 1, 2024. If you want to know your detailed results, please apply to geomshar@yandex.ru after publication of the list.

1. (8) Bisectors $A I$ and $C I$ meet the circumcircle of triangle $A B C$ at points A_{1}, C_{1} respectively. The circumcircle of triangle $A I C_{1}$ meets $A B$ at point C_{0}; point A_{0} is defined similarly. Prove that $A_{0}, A_{1}, C_{0}, C_{1}$ are collinear.
2. (8) Three different collinear points are given. What is the number of isosceles triangles such that these points are their circumcenter, incenter and excenter (in some order)?
3. (8) Let $A B C$ be an acute-angled triangle, and M be the midpoint of the minor arc $B C$ of its circumcircle. A circle ω touches the side $A B, A C$ at points P, Q respectively and passes through M. Prove that $B P+C Q=P Q$.
4. (8) The incircle ω of triangle $A B C$ touches $B C, C A, A B$ at points A_{1}, B_{1} and C_{1} respectively, P is an arbitrary point on ω. The line $A P$ meets the circumcircle of triangle $A B_{1} C_{1}$ for the second time at point A_{2}. Points B_{2} and C_{2} are defined similarly. Prove that the circumcircle of triangle $A_{2} B_{2} C_{2}$ touches ω.
5. (8) Points $A^{\prime}, B^{\prime}, C^{\prime}$ are the reflections of vertices A, B, C about the opposite sidelines of triangle $A B C$. Prove that the circles $A B^{\prime} C^{\prime}, A^{\prime} B C^{\prime}$, and $A^{\prime} B^{\prime} C$ have a common point.
6. (8-9) A circle ω and two points A, B of this circle are given. Let C be an arbitrary point on one of $\operatorname{arcs} A B$ of $\omega ; C L$ be the bisector of triangle $A B C$; the circle $B C L$ meet $A C$ at point E; and $C L$ meet $B E$ at point F. Find the locus of circumcenters of triangles $A F C$.
7. (8-9) Restore a bicentral quadrilateral if two opposite vertices and the incenter are given.
8. (8-9) Let $A B C D$ be a quadrilateral with $\angle B=\angle D$ and $A D=C D$. The incircle of triangle $A B C$ touches the sides $B C$ and $A B$ at points E and F respectively. Prove that the midpoints of segments $A C, B D, A E$, and $C F$ are concyclic.
9. (8-9) Let $A B C D(A D \| B C)$ be a trapezoid circumscribed around a circle ω, which touches the sides $A B, B C, C D$, and $A D$ at points P, Q, R, S respectively. The line passing through P and parallel to the bases of the trapezoid meets $Q R$ at point X. Prove that $A B, Q S$, and $D X$ concur.
10. (8-9) Let ω be the circumcircle of a triangle $A B C$. A point T on the line $B C$ is such that $A T$ touches ω. The bisector of angle $B A C$ meets $B C$ and ω at points L and A_{0} respectively. The line $T A_{0}$ meets ω at point P. The point K lies on the segment $B C$ in such a way that $B L=C K$. Prove that $\angle B A P=\angle C A K$.
11. (8-10) Let M, N be the midpoints of sides $A B, A C$ respectively of a triangle $A B C$. The perpendicular bisector to the bisectrix $A L$ meets the bisectrixes of angles B and C at points P and Q respectively. Prove that the common point of lines $P M$ and $Q N$ lies on the tangent to the circumcircle of $A B C$ at A.
12. (8-10) The bisectors $A A_{1}, C C_{1}$ of a triangle $A B C$ with $\angle B=60^{\circ}$ meet at point I. The circumcircles of triangles $A B C, A_{1} I C_{1}$ meet at point P. Prove that the line $P I$ bisects the side $A C$.
13. (8-11) Can an arbitrary polygon be cut into isosceles trapezoids?
14. (9-11) The incircle ω of a right-angled triangle $A B C$ touches the circumcircle of its medial triangle at point F. Let $O E$ be the tangent to ω from the midpoint O of the hypothenuse $A B$, distinct from $A B$. Prove that $C E=C F$.
15. (9-11) The difference of two angles of a triangle is greater than 90°. Prove that the ratio of its circumradius and inradius is greater than 4.
16. (9-11) Let $A A_{1}, B B_{1}$, and $C C_{1}$ be the bisectors of a triangle $A B C$. The segments $B B_{1}$ and $A_{1} C_{1}$ meet at point D. Let E be the projection of D to $A C$. Points P and Q on the sides $A B$ and $B C$ respectively are such that $E P=P D, E Q=Q D$. Prove that $\angle P D B_{1}=\angle E D Q$.
17. (9-11) Let $A B C$ be a non-isosceles triangle, ω be its incircle. Let D, E and F be the points at which the incircle of $A B C$ touches the sides $B C, C A$ and $A B$, respectively. Let M be the point on ray $E F$ such that $E M=A B$. Let N be the point on ray $F E$ such that $F N=A C$. Let the circumcircles of $\triangle B F M$ and $\triangle C E N$ intersect ω again at S and T, respectively. Prove that $B S, C T$ and $A D$ concur.
18. (9-11) Let $A A_{1}, B B_{1}, C C_{1}$ be the altitudes of an acute-angled triangle $A B C ; I_{a}$ be its excenter corresponding to $A ; I_{a}^{\prime}$ be the reflection of I_{a} about the line $A A_{1}$. Points $I_{b}^{\prime}, I_{c}^{\prime}$ are defined similarly. Prove that the lines $A_{1} I_{a}^{\prime}, B_{1} I_{b}^{\prime}, C_{1} I_{c}^{\prime}$ concur.
19. (10-11) A triangle $A B C$, its circumcircle, and its incenter I are drawn on the plane. Construct the circumcenter of $A B C$ using only a ruler.
20. (10-11) Lines a_{1}, b_{1}, c_{1} pass through the vertices A, B, C respectively of a triangle $A B C$; a_{2}, b_{2}, c_{2} are the reflections of a_{1}, b_{1}, c_{1} about the corresponding bisectors of $A B C$; $A_{1}=b_{1} \cap c_{1}, B_{1}=a_{1} \cap c_{1}, C_{1}=a_{1} \cap b_{1}$, and A_{2}, B_{2}, C_{2} are defined similarly. Prove that the triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ have the same ratios of the area and the circumradius (i.e. $\frac{S_{1}}{R_{1}}=\frac{S_{2}}{R_{2}}$, where $\left.S_{i}=S\left(\triangle A_{i} B_{i} C_{i}\right), R_{i}=R\left(\triangle A_{i} B_{i} C_{i}\right)\right)$.
21. (10-11) A chord $P Q$ of the circumcircle of a triangle $A B C$ meets the sides $B C, A C$ at points A^{\prime}, B^{\prime} respectively. The tangents to the circumcircle at A and B meet at point X, and the tangents at points P and Q meet at point Y. The line $X Y$ meets $A B$ at point C^{\prime}. Prove that the lines $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ concur.
22. (10-11) A segment $A B$ is given. Let C be an arbitrary point of the perpendicular bisector to $A B ; O$ be the point on the circumcircle of $A B C$ opposite to C; and an ellipse centered at O touch $A B, B C, C A$. Find the locus of touching points of the ellipse with the line $B C$.
23. (10-11) A point P moves along a circle Ω. Let A and B be fixed points of Ω, and C be an arbitrary point inside Ω. The common external tangents to the circumcircles of triangles $A P C$ and $B C P$ meet at point Q. Prove that all points Q lie on two fixed lines.
24. (11) Let $S A B C$ be a pyramid with right angles at the vertex S. Points $A^{\prime}, B^{\prime}, C^{\prime}$ lie on the edges $S A, S B, S C$ respectively in such a way that the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are similar. Does this yield that the planes $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are parallel?
