XIX GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN
 The correspondence round. Solutions

1. (A.Mardanov) (8) Let L be the midpoint of the minor arc $A C$ of the circumcircle of an acute-angled triangle $A B C$. A point P is the projection of B to the tangent at L to the circumcircle. Prove that P, L, and the midpoints of sides $A B, B C$ are concyclic.

Solution. Let M, N, and K be the midpoints of $A B, B C$, and $A C$; let H be the foot of the altitude from B; then H is also the common point of $B P$ and $A C$. It is clear that $M N\|A C\| P L$, thus $M P L N$ is a trapezoid. It is known that $M H K N$ is an isosceles trapezoid, hence $\angle M H P=\angle N K L, M H=K N$. Also $P H=K L$. Therefore the triangles MHP and $N K L$ are congruent, i.e the trapezoid $M P L N$ is isosceles (fig.1), thus P, L, and the midpoints of $A B$ and $B C$ are concyclic.

Fig. 1.
2. (N.Moskvitin) (8) The diagonals of a rectangle $A B C D$ meet at point E. A circle centered at E lies inside the rectangle. Let $C F, D G, A H$ be the tangents to this circle from C, D, A; let $C F$ meet $D G$ at point $I, E I$ meet $A D$ at point J, and $A H$ meet $C F$ at point L. Prove that $L J$ is perpendicular to $A D$.

Solution. Since the lines $D G$ and $A H$ are symmetric with respect to the perpendicular bisector to $A D$, and $A H$ and $C F$ are symmetric with respect to the perpendicular bisector to $A C$, we obtain that $\angle C I D=2 \angle E A D=\angle C E D$, i.e. C, D, I, E are concyclic. Hence $\angle A E I=\angle C D I$, and since $\angle A E L=\angle A D C=90^{\circ}$, we obtain that $\angle J E L=\angle I D A=$ $\angle J A L$. Therefore A, J, E, L are concyclic and $\angle A J L=90^{\circ}$ (fig.2).

Fig. 2.
3. (D.Mukhin) (8) A circle touches the lateral sides of a trapezoid $A B C D$ at points B and C, and its center lies on $A D$. Prove that the diameter of the circle is less than the medial line of the trapezoid.
Solution. Let O be the center of the circle; $E F$ be its diameter lying on $A D ; G, H$ be the projections of B and C to $A D$. Since the arcs $B E$ and $C F$ are equal, we obtain that $\angle A B G=\angle D C H$, i.e. $A G=D H$ and the trapezoid is isosceles. Therefore its medial line equals to $A H=E H+A E=E H+O A-O B$. But from the similarity of triangles $O A B$ and $O B G$ we have $O A-O B>O B-O G=G E=H F$, thus $A H>E H+H F=E F$ (fig.3).

Fig. 3.
4. (F.Ivlev, A.Mardanov) (8) Points D and E lie on the lateral sides $A B$ and $B C$ respectively of an isosceles triangle $A B C$ in such a way that $\angle B E D=3 \angle B D E$. Let D^{\prime} be the reflection of D about $A C$. Prove that the line $D^{\prime} E$ passes through the incenter of $A B C$.

Solution. Let the bisectors $A L$ and $C H$ meet at point I. Since $\angle B L A=\angle B A L+$ $\angle A C L=3 \angle B A L$, we obtain that $D E \| A L$. Also $A D^{\prime} \| B L$. Since $L E: A D^{\prime}=L E:$ $A D=B L: B A=I L: I A$, we obtain that $E D^{\prime}$ passes through I (fig.4).

Fig. 4.
5. (I.Kukharchuk) (8) Let $A B C D$ be a cyclic quadrilateral. Points E and F lie on the sides $A D$ and $C D$ in such a way that $A E=B C$ and $A B=C F$. Let M be the midpoint of $E F$. Prove that $\angle A M C=90^{\circ}$.
First solution. In the pentagon $A B C F E$ we have $\angle A+\angle C=180^{\circ}$, thus $\angle B+\angle E+$ $\angle F=360^{\circ}$. Draw from any point U segments $U X=A B=C F, U Y=B C=A E$, $U Z=M E=M F$ in such a way that $\angle X U Y=\angle B, \angle Y U Z=\angle E, \angle Z U X=\angle F$. Then the triangles $U X Y, U Y Z, U Z X$, and $X Y Z$ are congruent to the triangles $B A C, E M A$, $F M C$, and $A C M$ respectively, therefore $\angle A M C=\angle A M E+\angle C M F=90^{\circ}$ (fig.5).

Fig. 5.
Second solution. Construct the parallelogram $A B C U$. The point E, F are the reflections of U about the bisectors of angles $B A D, B C D$ respectively. Since $\angle A U C+\angle A D C=180^{\circ}$,
these bisectors are perpendicular. Therefore the triangle $U E F$ is right-angled, and the bisectors meet at its orthocenter M.
6. (D.Shvetsov) (8-9) Let A_{1}, B_{1}, C_{1} be the feet of altitudes of an acute-angled triangle $A B C$. The incicrle of triangle $A_{1} B_{1} C_{1}$ touches $A_{1} B_{1}, A_{1} C_{1}, B_{1} C_{1}$ at points C_{2}, B_{2}, A_{2} respectively. Prove that the lines $A A_{2}, B B_{2}, C C_{2}$ concur at a point lying on the Euler line of triangle $A B C$.
Solution. Since the altitudes of triangle $A B C$ coincide with the bisectors of triangle $A_{1} B_{1} C_{1}$ which are perpendicular to the sidelines of triangle $A_{2} B_{2} C_{2}$, we obtain that the triangles $A B C$ and $A_{2} B_{2} C_{2}$ are homothetic (fig.6). Its homothety center lies on the line passing through the circumcenters of these triangles, i.e. the Euler line of $A B C$.

Fig. 6.
7. (D.Demin, I.Kukharchuk) (8-9) Let A be a fixed point of a circle ω. Let $B C$ be an arbitrary chord of ω passing through a fixed point P. Prove that the nine-points circles of triangles $A B C$ touch some fixed circle not depending on $B C$.

Solution. The locus of the midpoints of chords $B C$ is the circle with diameter $O P$, where O is the center of ω. The homothety with center A and coefficient $2 / 3$ maps this circle to the locus of the centroids of triangles $A B C$. Applying the homothety with center O and coefficient $3 / 2$ to this circle, we obtain that the locus of the centers of the nine-points circles is also a circle. Since the radii of all nine-point circles are equal, we obtain that all these circles touch two fixed circles.
8. (G.Filipovsky) (8-9) A triangle $A B C(a>b>c)$ is given. Its incenter I and the touching points K, N of the incircle with $B C$ and $A C$ respectively are marked. Construct a segment with length $a-c$ using only a ruler and drawing at most three lines.

Solution. It is known that the common point T of the line $K N$ and the bisector $B I$ coincide with the projection of A to $B I$. Thus if $A T$ meets $B C$ at point P, then the altitude $B T$ of triangle $B P T$ coincides with the bisector. Therefore $B P=A B$ and $C P$ is the required segment (fig.8).

Fig. 8.
9. (S.Gubanov) (8-9) It is known that the reflection of the orthocenter of a triangle $A B C$ about its circumcenter lies on $B C$. Let A_{1} be the foot of the altitude from A. Prove that A_{1} lies on the circle passing through the midpoints of the altitudes of $A B C$.
Solution. The distance from the circumcenter to the line $B C$ equals to a half of $A H$, where H is the orthocenter. On the other hand the assumption yields that this distance equals to a half of $H A_{1}$. Therefore H is the midpoint of $A A_{1}$. Let A_{0} be the midpoint of $B C$. Since the midpoints X, Y of altitudes $B B_{1}, C C_{1}$ lie on the medial lines of the triangle, we obtain that the angles $A_{0} X H$ and $A_{0} Y H$ are right, i.e. the points X and Y lie on the circle with diameter $A_{0} H$. It is clear that A_{1} also lies on this circle (fig.9).

Fig. 9.
10. (G.Zabaznov) (8-9) Altitudes $B E$ and $C F$ of an acute-angled triangle $A B C$ meet at point H. The perpendicular from H to $E F$ meets the line ℓ passing through A and parallel to $B C$ at point P. The bisectors of two angles between ℓ and $H P$ meet $B C$ at points S and T. Prove that the circumcircles of triangles $A B C$ and $P S T$ are tangent.

Solution. Let $P H$ meet $B C$ at point M. Since $\angle M P T=\angle A P T=\angle M T P$, we have $M T=M P$. Similarly $M S=M P$, i.e. M is the circumcenter of triangle $P S T$. Also since $A O \perp E F$, we obtain that $A O \| M P$, where O is the circumcenter of triangle $A B C$. Since the reflection H^{\prime} of H about $B C$ lies on the circumcircle of $A B C$, we obtain that isosceles triangles $H M H^{\prime}$ and $A O H^{\prime}$ are similar, thus M lies on the segment $O H^{\prime}$, and the lines $O M$ and $M P$ form equal angles with $B C$. Then $O M$ and ℓ meet at the common point of circles $A B C$ and $P S T$, which is the tangency point of these circles (fig.10).

Fig. 10.
11. (M.Kursky) (8-10) Let H be the orthocenter of an acute-angled triangle $A B C ; E, F$ be points on $A B, A C$ respectively, such that $A E H F$ is a parallelogram; X, Y be the common points of the line $E F$ and the circumcircle ω of triangle $A B C ; Z$ be the point of ω opposite to A. Prove that H is the orthocenter of triangle $X Y Z$.
Solution. The assumption yields that $\angle B H E=\angle C H F=\pi / 2$, therefore the triangles $B H E$ and $C H F$ are similar and $A F: E B=E H: E B=H F: F C=A E: E C$. Hence $A E \cdot E B=A F \cdot F C$, i.e. the powers of E and F with respect to the circumcircle are equal and the midpoint D of $A H$ is also the midpoint of $X Y$. Thus the medial line $O D$ of triangle $A H Z$ is perpendicular to $X Y$. Therefore $Z H$ is the altitude of triangle $X Y Z$, and since the reflection A of H with respect to the midpoint of $X Y$ lies on the circumcircle, we obtain that H is the orthocenter (fig.11).

Fig. 11.
12. Let $A B C$ be a triangle with obtuse angle B, and P, Q lie on $A C$ in such a way that $A P=P B, B Q=Q C$. The circle $B P Q$ meets the sides $A B$ and $B C$ at points N and M respectively.
(a) (P.Ryabov, 8-9) Prove that the distances from the common point R of $P M$ and $N Q$ to A and C are equal.
(b) (A.Zaslavsky, 10-11) Let $B R$ meet $A C$ at point S. Prove that $M N \perp O S$, where O is the circumcenter of $A B C$.
Solution. (a) Let O be the circumcenter of triangle $A B C$. Then $O P \perp A B$ and $O Q \perp$ $B C$. Also $\angle N Q A=\angle N B P=\angle A$ and similarly $\angle M P C=\angle C$. Hence $\angle P R Q+\angle P O Q=$ π and $O P R Q$ is a cyclic quadrilateral. Therefore $\angle P R O=\angle P Q O=\pi / 2-\angle C$, i.e. the diagonals of this quadrilateral are perpendicular and $A R=A C$ (fig.12).

Fig. 12.
(b) By (a) the triangles $Q R P$ and $A B C$ are orthologic with center O. Also they are perspective with center S. By the Sondat theorem $O S$ is perpendicular to the perspective axis $M N$.
13. (A.Mardanov) (8-11) The base $A D$ of a trapezoid $A B C D$ is twice greater than the base $B C$, and the angle C equals one and a half of the angle A. The diagonal $A C$ divides angle C into two angles. Which of them is greater?
Solution. Let the lateral sidelines meet at point P and the perpendicular bisector to $P D$ meet $A P$ at point Q. Then $\angle A Q D=2 \angle Q P D=\angle Q A D$ and $A D=Q D>C D$ (a hypothenuse is greater than a cathetus). Thus $\angle A C D>\angle C A D=\angle B C A$ (fig.13).

Fig. 13.
14. (A.Skopenkov) (8-11) Suppose that a closed oriented polygonal line l in the plane does not pass through a point O, and is symmetric with respect to O. Prove that the winding number of l around O is odd.
The winding number of l around O is defined to be the following sum of the oriented angles divided by 2π :

$$
\operatorname{deg}_{O} l:=\frac{\angle A_{1} O A_{2}+\angle A_{2} O A_{3}+\ldots+\angle A_{n-1} O A_{n}+\angle A_{n} O A_{1}}{2 \pi}
$$

Solution. It is clear that the number of links is even: $n=2 k$. Since A_{1} and A_{k+1} are symmetric with respect to O, we obtain that between A_{1} and A_{k+1} the vector $O A_{i}$ rotates by angle $m \pi$, where m is odd. But it rotates by the same angle between A_{k+1} and A_{1}. Therefore the winding number equals $2 \pi m$.
15. (A.Matveev) (9-10) Let $A B C D$ be a convex quadrilateral. Points X and Y lie on the extensions beyond D of the sides $C D$ and $A D$ respectively in such a way that $D X=A B$ and $D Y=B C$. Similarly points Z and T lie on the extensions beyond B of the sides $C B$ and $A B$ respectively in such a way that $B Z=A D$ and $B T=D C$. Let M_{1} be the midpoint of $X Y$, and M_{2} be the midpoint of $Z T$. Prove that the lines $D M_{1}, B M_{2}$, and $A C$ concur.
Solution. Let $D M_{1}$ meet $A C$ at point P. Then $\sin \angle A D P: \sin \angle C D P=\sin \angle Y D M$: $\sin \angle X D M=X D: Y D=A B: B C$. Therefore $A P: C P=(A B \cdot A D):(C B \cdot C D)$. We obtain the same ratio for the meeting point of $A C$ with the line $B D_{2}$.
16. (P.Kozhevnikov) (9-11) Let $A H_{A}$ and $B H_{B}$ be the altitudes of a triangle $A B C$. The line $H_{A} H_{B}$ meets the circumcircle of $A B C$ at points P and Q. Let A^{\prime} be the reflection of A about $B C$, and B^{\prime} be the reflection of B about $C A$. Prove that $A^{\prime}, B^{\prime}, P, Q$ are concyclic.

Solution. Since the reflections of the orthocenter about the sidelines lie on the circumcircle, we have $H_{A} H \cdot H_{A} A^{\prime}=H_{A} B \cdot H_{A} C=H_{A} P \cdot H_{A} Q$, therefore P, Q, H, A^{\prime} are concyclic. Similarly P, Q, H, B^{\prime} are concyclic (fig.16).

Fig. 16.
17. (L.Shatunov) (9-11) A common external tangent to circles ω_{1} and ω_{2} touches them at points T_{1}, T_{2} respectively. Let A be an arbitrary point on the extension of $T_{1} T_{2}$ beyond T_{1}, and B be a point on the extension of $T_{1} T_{2}$ beyond T_{2} such that $A T_{1}=B T_{2}$. The tangents from A to ω_{1} and from B to ω_{2} distinct from $T_{1} T_{2}$ meet at point C. Prove that all nagelians of triangles $A B C$ from C have a common point.
Solution. Let us prove that all nagelians pass through the center of internal homothety of the circles. Reformulate the problem: let a triangle $A B C$ be given; T_{1}, T_{2} be two points on the side $A B$, symmetric with respect to its midpoint; and two circles inscribed into angles A, B touch $A B$ at T_{1}, T_{2} respectively. Then the internal homothety center of these circles lies on the nagelian $C D$.
When T_{1}, T_{2} move along $A B$, the centers of the circles move along the bisectors of angles A and B respectively, and the ratio of their radii is constant and equals $\cot \frac{A}{2}: \cot \frac{B}{2}=$ $A D: B D$. Therefore the homothety center moves along some line passing through D. Also since $A C+A D=B C+B D$, we obtain that the incircle of triangle $A C D$ corresponds to the incircle of triangle $B C D$ (fig.17). It is clear that the homothety center of these circles lies on $C D$. Thus this is correct for any pair of corresponding circles.

Fig. 17.
18. (A.Zaslavsky) (9-11) Restore a bicentral quadrilateral $A B C D$ if the midpoints of the arcs $A B, B C, C D$ of its circumcircle are given.
Solution. The circumcircle of the quadrilateral passes through given points, and its chords joining the midpoints of the opposite arcs are perpendicular. Hence we can restore the midpoint of the arc $D A$. The tangents to the circumcircle at the midpoints of arcs are parallel to the sidelines of the required quadrilateral, and two quadrilaterals are homothetic because they are circumscribed. Therefore we can draw the circumcircle of the quadrilateral formed by the tangents, and applying the homothety mapping this circle to the circumcircle we restore the quadrilateral.
19. (A.Zaslavsky) (10-11) A cyclic quadrilateral $A B C D$ is given. An arbitrary circle passing through C and D meets $A C, B C$ at points X, Y respectively. Find the locus of common points of circles $C A Y$ and $C B X$.

Answer. The line $C E$, where $A E B D$ is a harmonic quadrilateral.
Solution. Consider a composition of an inversion centered at C and the reflection about the bisector of angle $B C A$, swapping A and B. It swaps also the line $A B$ and the circumcircle of $A B C D$, i.e. maps D to some point D^{\prime} on $A B$; the image of any circle passing through C and D is a line passing through D^{\prime} and meeting $A C, B C$ at points Y^{\prime}, X^{\prime} respectively. The circles $C A Y$ and $C B X$ are transformed to the lines $A X^{\prime}, B Y^{\prime}$, and the common point of these lines lies on the line passing through C and meeting $A B$ at point E^{\prime} such that $A, B, D^{\prime}, E^{\prime}$ is a harmonic quadruple. Repeated applying of the inversion and the reflection maps this line to $C E$ (fig.19).

Fig. 19.
20. (A.Shevtsov) (10-11) Let a point D lie on the median $A M$ of a triangle $A B C$. The tangents to the circumcircle of triangle $B D C$ at points B and C meet at point K. Prove that $D D^{\prime}$ is parallel to $A K$, where D^{\prime} is isogonally conjugated to D with respect to $A B C$.
First solution. If D moves along $A M$, then D^{\prime} and K move along a symedian and the perpendicular bisector to $B C$. The correspondence between D^{\prime} and D is projective, and K depend on D quadratically (it is the pole of fixed line $B C$ with respect to the circle $B D C$, and the coefficients of equation of this circle are quadratic functions of D). Hence we have to prove the assertion for five positions of D. If D coincides with A, then D^{\prime} is the foot of the symedian, and K is the common point of tangents to the circumcircle of $A B C$, i.e., all three points are collinear. If D is the second common point of $A M$ with the circumircle, then K also lies on the symedian, and D^{\prime} is its infinite point. If D coincides with M, then K also coincides with M, and D^{\prime} coincides with A. If $A B D C$ is a parallelogram, then D^{\prime} is the common point of the tangents to the circumcircle at B and C, and K is the reflection of D^{\prime} about M. Finally if D is infinite, then K coincides with M. The required assertion is correct for all cases.

Second solution

(N. Beluhov, https://artofproblemsolving.com/community/c6h3025566p27515578)

Denote the circle $B D C$ by Γ and let $A B$ and $A C$ meet Γ again at B^{\prime} and C^{\prime}. Also let M^{\prime} be the midpoint of $B^{\prime} C^{\prime}$ and let the tangents to Γ at B^{\prime} and C^{\prime} meet at K^{\prime}.
Notice that A, K, and K^{\prime} are collinear. (All three lie on the polar of $B C \cap B^{\prime} C^{\prime}$ with respect to Γ.) So what we want becomes $D D^{\prime} \| K K^{\prime}$. We will show that both of $D D^{\prime}$ and $K K^{\prime}$ are antiparallel to $M M^{\prime}$ within $\angle B A C$.
We begin with $D D^{\prime}$. Let $A D$ meet Γ again at E. Then $A B D^{\prime} \sim A E C$, and so $A D^{\prime} \cdot A E=$ $A B \cdot A C$. Hence, $A D: A D^{\prime}=(A D \cdot A E):\left(A D^{\prime} \cdot A E\right)=\left(A B \cdot A B^{\prime}\right):(A B \cdot A C)=A B^{\prime}:$ $A C$.

On the other hand, $A B C M \sim A C^{\prime} B^{\prime} M^{\prime}$, and so $A M: A M^{\prime}=A C: A B^{\prime}=A D^{\prime}: A D$. Furthermore, A, D, and M are collinear, and the same similarity yields also $\angle B A M=$ $\angle C^{\prime} A M^{\prime}$, so that A, D^{\prime}, and M^{\prime} are collinear as well. Thus D, D^{\prime}, M, and M^{\prime} are
concyclic. From here, a straightforward angle chase shows that $D D^{\prime}$ and $M M^{\prime}$ are indeed antiparallel within $\angle B A C$, as claimed.
We continue with $K K^{\prime}$. Let O and R be the center and radius of Γ. Then O, M, and K are collinear, O, M^{\prime}, and K^{\prime} are collinear as well, and $O M \cdot O K=R^{2}=O M^{\prime} \cdot O K^{\prime}$. Consequently, K, K^{\prime}, M, and M^{\prime} are concyclic. From here, a straightforward angle chase shows that $K K^{\prime}$ and $M M^{\prime}$ are indeed antiparallel within $\angle B A C$, as claimed. The solution is complete.
21. (I.Mikhaylov) (10-11) Let $A B C D$ be a cyclic quadrilateral; $M_{a c}$ be the midpoint of $A C$; H_{d}, H_{b} be the orthocenters of $\triangle A B C, \triangle A D C$ respectively; P_{d}, P_{b} be the projections of H_{d} and H_{b} to $B M_{a c}$ and $D M_{a c}$ respectively. Define similarly P_{a}, P_{c} for the diagonal $B D$. Prove that $P_{a}, P_{b}, P_{c}, P_{d}$ are concyclic.
Solution. It is known that A, C, P_{d}, H_{d} lie on the circle symmetric to the circumcircle of $A B C$ with respect to $M_{a c}$. Hence $M A \cdot M C=M P_{d} \cdot M B^{\prime}=M P_{d} \cdot M B$, where B^{\prime} is the vertex of a parallelogram $A B C B^{\prime}$. Similarly $M A \cdot M C=M D \cdot M P_{b}$, thus B, D, P_{b}, P_{d} are concyclic. Also since A, C, P_{b}, P_{d} are concyclic, we obtain that $B D, A C$, and $P_{b} P_{d}$ concur at the radical center L (fig.21). Similarly $P_{a} P_{c}$ passes through L, and $L P_{a} \cdot L P_{c}=L A \cdot L C=L B \cdot L D=L P_{b} \cdot L P_{d}$ which yields the required assertion.

Fig. 21.
22. (A.Mudgal, P.Srivastava) (10-11) Let $A B C$ be a scalene triangle, M be the midpoint of $B C, P$ be the common point of $A M$ and the incircle of $A B C$ closest to A, and Q be the common point of the ray $A M$ and the excircle farthest from A. The tangent to the
incircle at P meets $B C$ at point X, and the tangent to the excircle at Q meets $B C$ at Y. Prove that $M X=M Y$.

Solution. Consider the homothety centered at A and mapping the excircle to the incircle. Let $B^{\prime}, C^{\prime}, M^{\prime}, Q^{\prime}, Y^{\prime}$ be the images of B, C, M, Q, Y respectively. Then $B B^{\prime} C^{\prime} C$ is a trapezoid circumscribed around the incircle of $A B C$, denote the touching points of $B C$, $B^{\prime} C^{\prime}, B B^{\prime}, C C^{\prime}$ as K, L, U, V respectively. By the Brianchon theorem the common point J of segments $K L$ and $U V$ coincides with the common point of the diagonals of the trapezoid, therefore J lies on $A M$ (fig.22). Also $J K: J L=B C: B^{\prime} C^{\prime}$. The lines $P X, B C, Q^{\prime} Y^{\prime}$, and $B^{\prime} C^{\prime}$ form a quadrilateral circumscribed around the same circle, thus its diagonal $X Y^{\prime}$ also passes through J and $X M: Y^{\prime} M^{\prime}=J K: J L$. Using the inverse homothety we obtain the required equality.

Fig. 22.
23. (A.Mardanov) (10-11) An ellipse Γ_{1} with foci at the midpoints of sides $A B$ and $A C$ of a triangle $A B C$ passes through A, and an ellipse Γ_{2} with foci at the midpoints of $A C$ and $B C$ passes through C. Prove that the common points of these ellipses and the orthocenter of triangle $A B C$ are collinear.

Solution. Let B_{0} be the midpoint of $A C$. The directrices d_{1}, d_{2} of ellipses Γ_{1}, Γ_{2} corresponding to the focus B_{0} are parallel to the altitudes $A H, C H$, therefore the distances from H to d_{1} and d_{2} are equal to the distances from A and C respectively to these lines. Since $A B_{0}=C B_{0}$, the ratio of these distances is inverse to the ratio of the excentricities. Since this ratio is the same for the common points of the ellipses, these three points are collinear.
24. (Tran Quang Hung) (11) A tetrahedron $A B C D$ is given. A line ℓ meets the planes $A B C$, $B C D, C D A, D A B$ at points $D_{0}, A_{0}, B_{0}, C_{0}$ respectively. Let P be an arbitrary point not lying on ℓ and the planes of the faces, and $A_{1}, B_{1}, C_{1}, D_{1}$ be the second common points of lines $P A_{0}, P B_{0}, P C_{0}, P D_{0}$ with the spheres $P B C D, P C D A, P D A B, P A B C$ respectively. Prove that $P, A_{1}, B_{1}, C_{1}, D_{1}$ lie on a circle.

Solution. Let S be the circumsphere of $A B C D$, and ω be the circumcircle of triangle $P A_{1} B_{1}$. Then $B C D$ is the radical plane of S and the circumsphere of $P B C D$; since A_{0} lies on the plane $B C D$, the powers of A_{0} with respect to S and the sphere $P B C D$ are equal, i.e. $A_{0} P \cdot A_{0} A_{1}$. This product equals also to the power of A_{0} with respect to the circumcircle ω of triangle $P A_{1} B_{1}$. Thus A_{0} lies on the radical axis of S and ω. Similarly we obtain that B_{0} lies on the radical axis of S and ω. Therefore this radical axis coincides with ℓ.

Since C_{0} lies on the radical plane $D A B$ of S and the circumsphere of $P D A B$, the powers of C_{0} with respect to these spheres are equal. Hence $P C_{0}$ is the radical axis of ω and the sphere $P D A B$, but $P C_{0}$ meets this sphere at C_{1}, therefore C_{1} lies on ω. Similarly D_{1} lies on ω. Thus $P, A_{1}, B_{1}, C_{1}, D_{1}$ are concyclic.

