
XIX GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

The final round. Solutions
First day. 8 form

1. (A.Zaslavsky) Let ABC be an isosceles obtuse-angled triangle, and D be a
point on its base AB such that AD equals to the circumradius of triangle
BCD. Find the value of ∠ACD.

Answer. 30◦ or 150◦.

Solution. Let O be the circumcenter of triangle BCD, M be the midpoint
of CD, and H be the projection of D to AC. Then ∠DOM = ∠DOC/2 =
∠DBC = ∠DAC and DO = DA (fig. 8.1). Therefore the triangles DAH
and DOM are congruent, i.e. DH = DM = DC/2 and ∠DCH = 30◦.
Hence the angle ACD equals 30◦, if H lies on segment AC, otherwise it
equals 150◦.
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Fig. 8.1

Remark. The problem may also be solved by the sines law.

2. (A.Teryoshin) The bisectors of angles A, B, and C of triangle ABC meet
for the second time its circumcircle at points A1, B1, C1 respectively. Let
A2, B2, C2 be the midpoints of segments AA1, BB1, CC1 respectively. Prove
that the triangles A1B1C1 and A2B2C2 are similar.

Solution. Since A1, B1, C1 are the midpoints of arcs BC, CA, AB respectively,
the sum of arcs B1C and A1C1 equals a cemicircle, thus CC1 and A1B1 are
perpendicular. Hence A1A, B1B, C1C are the altitudes of triangle A1B1C1,
and their common point I is its orthocenter. The points A2, B2, C2 are the
projections of the circumcenter O of ABC to AA1, BB1, CC1, therefore they
lie on the circle with diameter OI. Then ∠B2A2C2 = ∠B2IC2 = ∠B1A1C1



(fig. 8.2). Similarly we obtain that ∠A1B1C1 = ∠A2B2C2 and thus the
triangles are similar.
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Fig. 8.2

Remark. The required assertion is a partial case of the following fact. If H
is the orthocenter of triangle ABC, P is an arbitrary point of the plane, and
A′, B′, C ′ are the projections of P to AH, BH, CH respectively, then the
triangles ABC and A′B′C ′ are similar.

3. (A.Terteryan) The altitudes of a parallelogram are greater than 1. Does this
yield that the unit square may be covered by this parallelogram?

Answer. No.

Solution. Firstly consider how the square may be covered by a strip with
width h. Since the projections of diagonals to the perpendicular to the
strip can not be greater than h, the angles between the diagonals and this
perpendicular have to be sufficiently large. Choose h such that the critical
value of this angle equals 44◦, then the angle between the boundary of the
strip and some sideline of the square is less than 1◦.

Take now a rhombus with altitude h. If the unit square is covered by this
rhombus, then the angles between each sideline of the rhombus and some
sideline of the square is less than 1◦. If this sideline is the same for both



sideline of the rhombus, then the acute angle of the rhombus is less than 2◦.
In the opposite case the acute angle is greater than 88◦. Therefore the unit
square can not be covered by a rhombus with altitude h and acute angle 45◦.
Remark. From the solution we see that the square covered by a rhombus
with angle 45◦ may be covered by any parallelogram having greater or equal
altitudes. Thus the minimal value of altitude warranting that the unit square
can be covered is

√
2 sin 67, 5◦. The square may be covered by a rhombus with

such altitude by two ways (fig. 8.3).

Fig. 8.3

4. (A.Zaslavsky) Let ABC be an acute-angled triangle, O be its circumcenter,
BM be a median, and BH be an altitude. Circles AOB and BHC meet for
the second time at point E, and circles AHB and BOC meet at point F .
Prove that ME = MF .
Solution. Let the extension of BH meet the circumcircle at point D. Prove
that E lies also on circles DCO and ADH. In fact let E ′ be the second
common point of circles ABO and DCO. Then ∠BE ′C = 2π − ∠BE ′O −
∠CE ′O = BAO + ∠CDO = π − (∠AOB + ∠COD)/2 = π/2, i.e. E ′

coincide with E. Similarly F lies on circles CHD and AOD.
Note now that ∠OEH = 2π − ∠OEB − ∠BEH = ∠OAB + ∠BCH =
∠CBH + ∠BCH = π/2, therefore E lies on the circle with diameter OH.
Similarly F lies on this circle. It is clear that M also lies on this circle.
Prove that the reflections of lines AF , BF , CF , DF about the bisectors of
angles A, B, C, D respectively meet at E. Let P , Q, R, S be the projections
of F to AB, BC, CD, DA respectively. Then ∠PSR+∠PQR = ∠FSP +
∠FSR + ∠FQP + ∠FQR = ∠FAB + ∠FRC + ∠FBA + ∠FDC = π,



because ∠AFB = ∠CFD = π/2. Thus P , Q, R, S are concyclic. Then the
reflections P ′, Q′, R′, S ′, of F about AB, BC, CD, DA are also concyclic.
Since, for example, AP ′ = AF = AS ′, the perpendicular bisector to P ′S ′

coincide with the bisector of angle P ′AS ′, which is symmetric to AF about
the bisector of angle A. Hence the reflections of AF , BF , CF , DF about
the corresponding bisectors meet at the circumcenter E ′′ of P ′Q′R′S ′. It is
easy to see that the angles BE ′′C and AE ′′D are right, i.e. E ′′ coincide with
E.

Finally we obtain that ∠EHM = ∠EBC = ∠FCA = ∠FHM and since
E, F , H, M are concyclic, EM = FM (fig. 8.4).

A

B

C

D

O

E

M
F

H

Fig. 8.4

Remark. Since the lines joining E and F with the vertices of ABCD are
symmetric about the bisectors of its angles, these points are the foci of an
inellipse. Also they are symmetric about the line joining the midpoints of
AC and BD.



XIX GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

The final round. Solutions
Second day. 8 form

5. (L.Popov) The median CM and the altitude AH of an acute-angled triangle
ABC meet at point O. A point D lies outside the triangle in such a way that
AOCD is a parallelogram. Find the length of BD, if MO = a, OC = b.

Answer. 2a+ b.

Solution. Let K be a point on the ray CM such that CM = MK. Then
CAKB is a parallelogram, i.e. AK = BC and AK ∥ BC. Also AO = CD
and ∠BCD = ∠OAK = 90◦ because AH is the altitude (fig. 8.5). Therefore
the triangles BCD and KAO are congruent, i.e. BD = OK = 2CM−CO =
2a+ b.
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6. (F.Nilov) For which n the plane may be paved by congruent figures bounded
by n arcs of circles?

Answer. n > 2.

Solution. Take a square ABCD and replace the sides AB, AD by equal
arcs directed outside it, and replace the sides BC, CD by the same arcs



directed inside the square. It is clear that the plane may be paved by the
obtained figures bounded by four arcs. Also the plane may be paved by the
strip composed from k such figures, and this strip is bounded by 2k+2 arcs.
Finally we can choose the radius of arcs such that the arcs AB and AD
form a cemicircle (fig. 8.6). The obtained figure is bounded by three arcs.
Composing a strip from k figures we obtain a figure bounded by 2k+1 arcs.
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If n = 2, then the figure is a crescent and its external arc is longer than the
internal one. Hence there exists a point on the external arc belonging to two
other crescents. It is clear that the angle formed by their external arcs can
not be paved.

7. (G.Filippovsky) The bisector of angle A of triangle ABC meet its circumcircle
ω at point W . The circle s with diameter AH (H is the orthocenter of ABC)
meets ω for the second time at point P . Restore the triangle ABC if the
points A, P , W are given.

Solution. By the points A, P , W restore ω, its center O and the point
A′ opposite to A. Since ∠APA′ = ∠APH = 90◦, H lies on PA′. Since
∠ABA′ = ∠ACA′ = 90◦, the quadrilateral HBA′C is a parallelogram, i.e.
H and A′ are symmetric with respect to the midpoint M of BC. Hence
we can restore M , as the common point of PA′ and OW , finally draw a
perpendicular through M to OW and find its common points B, C with ω
(fig. 8.7).
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8. (D.Dyomin, I.Kykharchyk) Two circles ω1 and ω2 meeting at point A and a
line a are given. Let BC be an arbitrary chord of ω2 parallel to a, and E, F
be the second common points of AB and AC respectively with ω1. Find the
locus of common points of lines BC and EF .

Answer. Let X1X2 be the diameter of ω2 perpendicular to a, and Y1, Y2

be the second common point of AX1, AX2 respectively with ω1. Then the
required locus is the interval bounded by the common points of the tangents
to ω2 at X1, X2 and the tangents to ω1 at Y1, Y2 respectively.

Solution. Let B1C1, B2C2 be two dispositions of BC, and E1F1, E2F2 be
two corresponding dispositions of EF . Since the arcs B1B2 and C1C2 are
equal, the arcs E1F1 and E2F2 are also equal, i.e. E1F1 ∥ E2F2. Also the
chords BiCi and EiFi bound the arcs with the same angular measure (fig.
8.8). Therefore when the line BC moves uniformly, EF also moves uniformly,
and their common point moves on the line. Clearly the boundary dispositions
of this points are the common points of the tangents.
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1. (E.Bakaev) The ratio of the medianAM of a triangle ABC to the side BC
equals

√
3 : 2. The points on the sides of ABC dividing these side into 3

equal parts are marked. Prove that some 4 of these 6 points are concyclic.

First solution. using the median formula we obtain AM 2 = (2b2 + 2c2 −
a2)/4 = 3a2/4, i.e. b2 + c2 = 2a2. Then the square of the median from B
equals (2a2 + 2c2 − b2)/4 = 3c2/4, similarly the square of the median from
C equals 3b2/4. Therefore the triangle formed by the medians is similar to
ABC.

Now let A1, A2 lie on BC, B1, B2lie on CA, and C1, C2 lie on AB in such a
way that BA1 = A1A2 = A2C, CB1 = B1B2 = B2A, AC1 = C1C2 = C2B.
Then, for example, the median of triangle BC1A2 C1A1 = 2AM/3, i.e. the
triangle A1B1C1 is similar to the triangle formed by the medians and the
triangle ABC. Hence ∠A1B1C1 = ∠A = ∠A1C2B and the circle A1B1C1

passes through C2 (fig. 9.1).
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Second solution. Let segments B1C2 and A1C1 meet at point O. Prove
that these segments are diagonals of a cyclic quadrilateral. Find in which
ratios they divide one other: C1O = A1O = x, B1O = 3y, C2O = y. Also
A1C1 = 2

3AM , B1C2 = 2
3BC, thus A1C1 : B1C2 = AM : BC =

√
3
2 .

Therefore 2x
4y =

√
3
2 , i.e. x2 = 3y2, hence B1O · C2O = C1O · A1O. Thus the

quadrilateral B1C1C2A1 is cyclic.



2. (A.Yuran) Can a regular triangle be placed inside a regular hexagon in such
a way that all vertices of the triangle were seen from each vertex of the
hexagon? (Point A is seen from B, if the segment AB dots not contain
internal points of the triangle.)

Answer. No.

Solution. All points such that the vertices of triangle XY Z are seen from
them lie inside three angles vertical to the angles of the triangle. If each
of these angles contains exactly two vertices of the hexagon, then its main
diagonals can not be concurrent. In the other case two non-adjacent vertices
of the hexagon lie on the same angle, for example non-adjacent vertices A

and B lie on the angle vertical to the angle X. Then ∠AXB ≤ 60◦, and the
arc AXB lies outside the hexagon.

3. (P.Bibikov) Points A1, A2, B1, B2 lie on the circumcircle of a triangle ABC
in such a way that A1B1 ∥ AB, A1A2 ∥ BC, B1B2 ∥ AC. The line AA2 and
CA1 meet at point A′, and the lines BB2 and CB1 meet at point B′. Prove
that all lines A′B′ concur.

First solution. Let CA1, CB1 meet AB at points X, Y respectively. Since
the arcs CA2, BA1, AB1, and CB2 are equal, we obtain that AA′ ∥ B′Y ,
BB′ ∥ A′X, and the triangles AA′X and Y B′B are homothetic. Their
homothety center Z lies on the line AB and satisfies to ZX ·ZY = ZA ·ZB.
Since ∠ACX = ∠BCY , the circles ABC and CXY are tangent. Therefore
Z lies on their common tangent and do not depend on A′, B′ (fig.9.3).



A B

C

Y

X

A1B1

A2

B2

A′

B′

Z

Fig. 9.3

Second solution (sketch). Since the correspondence between A1 and A2 is
projective, the locus of A′ is some conic passing through A and C. When A1

lies on the internal or the external bisector of angle C, the lines AA2 and CA1

are parallel, therefore this conic is an equilateral hyperbola with asymptotes
parallel to these bisectors. Similarly the locus of B′ is an equilateral hyperbola
passing through B and C with asymptotes parallel to the bisectors. The
correspondence between A′ and B′ is also projective, and both points coincide
with C and infinite points at the same time. Therefore all lines A′B′ concur
at the fourth common point of two hyperbolas.

4. (G.Galyapin) The incircle ω of a triangle ABC centered at I touches BC at
point D. Let P be the projection of the orthocenter of ABC to the median
from A. Prove that the circle AIP and ω cut off equal chords on AD.

Solution. Let M be the midpoint of BC, N be the midpoint of AD, E be
the second common point of AD and ω, and F b the common point of MI
with the circle DIE. It is known that the radii of circles BCP and ABC are
equal, hence MP ·MA = MB2. Also M , I, N are collinear (on the Gauss line
of the degenerated quadrilateral ABDC). Finally the quadrilateral DB′EC ′

is harmonic, where B′ and C ′ are the touching points of ω with AC and AB,
hence the tangent to ω at E passes through the point Z = B′C ′∩BC, forming
a harmonic quadruple with B, C, D. Then each circle passing through D and



Z is orthogonal to the circle with diameter BC, partially we have this for the
circle DIE (with diameter IZ). Therefore MI ·MF = MB2 = MP ·MA,
i.e. AFIP is a cyclic quadrilateral (fig. 9.4). Then the degrees of N with
respect to ω and (AIP ) are equal which yields the required equality.
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Remark. Point F is the inversion image of N and I with respect to the
circle with diameter BC and ω respectively.
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5. (A.Mardanov) A point D lie on the lateral side BC of an isosceles triangle
ABC. The ray AD meets the line passing through B and parallel to the base
AC at point E. Prove that the tangent to the circumcicle of triangle ABD
at B bisects EC.
Solution. Let M be the common point of the tangent with CE. Then
∠CBM = ∠DAB, thus ∠MBE = ∠CAD. On the other hand BC : BE =
(BC : AC)(AC : BE) = (AB : AC)(CD : BD) = sin∠DAC : sin∠DAB.
Therefore BM is a median of triangle BCE (fig.9.5).
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6. (G.Zabaznov) Let ABC be an acute-angled triangle with circumcircle Ω.
Points H and M are the orthocenter and the midpoint of BC respectively.
The line HM meets the circumcircle ω of triangle BHC at point N ̸= H.
Point P lies on the arc BC of ω not containing H in such a way that
∠HMP = 90◦. The segment PM meets Ω at point Q. Points B′ and C ′ are
the reflections of A about B and C respectively. Prove that the circumcircles
of triangles AB′C ′ and PQN are tangent.
Solution. Let T be the point of Ω opposite to A (T is the circumcenter
of triangle AB′C ′ and lie on MH), and Q′ be the reflection of A about Q.



Since the circle Ω and ω are symmetric with respect to M , MQ · MP =
MH ·MN = MT ·MN , i.e. T lies on the circle PQN . Also the triangles
MQN and MHP (congruent to MTP ) are similar, thus ∠NHP = ∠NQM

and the radii of circles PQN and ω are equal. Therefore the circle PQN is
the reflection of Ω about QT and touches the circle AB′C ′ at Q′ (fig. 9.6).
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7. (F.Bakharev) Let H be the orthocenter of triangle T. The sidelines of triangle
T1 pass through the midpoints of T and are perpendicular to the corresponding



bisectors of T. The vertices of triangle T2 bisect the bisectors of T. Prove that
the lines joining H with the vertices of T1 are perpendicular to the sidelines
of T2.

Solution. Prove that the lines joining H with the vertices of T1 are the
radical axes of circles having the bisectors of T as diameters. This yields
the required assertion. Since these radical axes are perpendicular to the lines
joining the centers, it is sufficient to prove that the vertices of T1 have the
same degrees with respect to the corresponding pairs of circles. We prove
that the vertex of T1 is the radical center of two circles having bisectors as
diameters and the incircle of T. Since the sideline of T1 is perpendicular to
the bisector of T (i.e the centers line of he incircle and the circle having this
bisector as diameter), it is sufficient to prove that the degrees of the midpoint
of the side with respect to these circles are equal.

Denote the vertices of T by A, B, and C, the midpoint of BC by M , the
foot of the corresponding bisector by L, the foot of the altitude by D, and
the touching point with the incircle by T . We have to prove that MT 2 =
ML · MD. If the sidelengths are a, b и c, then MT = |b − c|/2, ML =
a|b− c|/2(b+ c), MD = |b2 − c2|/2a, which yields the required equality.

8. (M.Didin, I.Frolov) Let ABC be a triangle with ∠A = 120◦, I be the
incenter, and M be the midpoint of BC. The line passing through M and
parallel to AI meets the circle with diameter BC at points E and F (A and
E lie on the same semiplane with respect to BC). The line passing through E
and perpendicular to FI meets AB and AC at points P and Q respectively.
Find the value of ∠PIQ.

Answer. 90◦.

Solution. Note that the circumcircle of ABC forms equal angles with circles
BCI and BCE. Therefore the inversion about the circumcircle transposes
these circles, and the circumcenter O of ABC is their internal homothety
center. Since AI passes through the center of circle BIC and is parallel to
EF , we obtain that O lies on FI.

Let P ′, Q′ be the reflections of C and B about BI and CI respectively, E ′

and M be the midpoints of P ′Q′ and BC respectively. Then BIQ′, CIP ′

are regular triangles, and the vector E ′M equals a semisum of vectors Q′B

and P ′C. Since the angle between these vectors equals 30◦ = π − ∠BIC,
E ′M = BC/2. Also E ′M and the altitude of triangle BIC form equal angles
with the bisector of angle BIC, hence E ′M ∥ AI, and E ′ coincide with с E.



Now use next

Lemma. Let the sides of triangle XY Z be the bases of isosceles triangles
XY Z ′, Y ZX ′, ZXY ′ lying outside XY Z and such that ∠X ′ZY = ∠Y ′ZX =
π/2− ∠Z ′XY . Then ZZ ′ ⊥ X ′Y ′.

Proof. Let X ′′, Y ′′ be the reflections of Z about X, Y , and P be the
projection of Z to X ′′Y ′′. Then ZPX ′′Y , ZPY ′′X are cyclic quadrilaterals,
therefore ∠Y PX ′′ = ∠XPY ′′ = ∠X ′ZY and the bisector ZP of angle
XPY meets the perpendicular bisector to XY at point Z ′.

�
Applying the lemma to triangles BIQ′, CIP ′, and BOC we obtain that
OI ⊥ P ′Q′ (fig. 9.8). Hence P ′, Q′ coincide with P , Q, and ∠PIQ = 90◦.
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Remark. The lemma was proposed as a problem on XXX Tournament of
Towns.
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1. (A.Mardanov) Let M be the midpoint of cathetus AB of triangle ABC with
right angle A. Point D lies on the median AN of triangle AMC in such a
way that the angles ACD and BCM are equal. Prove that the angle DBC
is also equal to these angles.

First solution. Since CM is a median, AC : BC = sin∠MCB : sin∠MCA =
sin∠ACD : sin∠DAC = AD : CD, i.e. AC : AD = BC : CD. Also
∠CAD = ∠ACM = ∠BCD. Therefore the triangles ACD and BDC are
similar, and ∠DBC = ∠ACD (fig. 10.1).
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Second solution. A point D′ isogonally conjugated to D with respect to
ABC is the projection of A to CM . Hence MB2 = MA2 = MD′ ·MC, the
triangles BMC and D′MB are similar, and ∠DBC = ∠D′BM = ∠BCM .

Remark. the point D′ is the projection of the orthocenter of ABC to the
median, i.e. a Humpty point. Thus D is a Dumpty point.

2. (M.Plotnikov, B.Frenkin) The Euler line of a scalene triangle touches its
incircle. Prove that this triangle is obtuse-angled.

First solution. Let H be the orthocenter of triangle ABC, O be its circumcenter,
I be the incenter, and A′, B′, C ′ be the touching points of the incircle
with BC, CA, AB respectively. Suppose that ABC is not an obtuse-angled



triangle, and the touching point of OH with the incircle lies on the arc B′C ′.
The O, H lie inside or on the boundary of triangle ABC, thus they lie inside
the quadrilateral IB′AC ′. therefore the projections of O and H to AB lie
on the segment AC ′. But the touching point of the incircle with any side lies
between the midpoint of this side and the foot of the corresponding altitude
— a contradiction.

Second solution (sketch). Use the following fact: The Euler line of an
acute-angled scalene triangle intersects the longest and the shortest sides,
and the Euler line of an obtuse-angled triangle intersects two major sides.
Let the Euler line of a triangle divides it into a triangle and a quadrilateral.
Prove that I lies inside the quadrilateral if and only if the original triangle
is obtuse-angled.

Fix the circumcircle and the incircle of a triangle and "rotate" the triangle
between them. The form of a part containing I may change when I lies on
the Euler line, or when this line passes through one of vertices of the triangle.
But in the first case the triangle is isosceles, i.e. one vertex lie on the line OI,
and when the triangle passes through this position the configuration changes
to the symmetric one. Therefore the form of the part does not change. In the
second case the Euler line is a median of a right-angled triangle, and I lies
in the part containing its minor cathetus. For an acute-angled triangle this
part is also a triangle, and for an obtuse-angled triangle it is a quadrilateral.

3. (M.Didin, I.Frolov) Let ω be the circumcircle of triangle ABC O be its center,
A′ be the point of ω opposite to A, and D be a point on a minor arc BC of
ω. A point D′ is the reflection of D about BC. The line A′D′ meets ω for the
second time at point E. The perpendicular bisector to D′E meets AB and
AC at points F and G respectively. Prove that ∠FOG = 180◦ − 2∠BAC.

First solution. Let the line passing through D′ and perpendicular to A′D′

meet AB and AC at points F ′ and G′ respectively. Since ∠AEA′ = 90◦,
we have AF = FF ′, AG = GG′, and ∠FOG = ∠F ′A′G′. Since ∠ABA′ =
∠ACA′ = 90◦, A′BF ′D′ and A′G′CD′ are cyclic quadrilaterals, therefore
∠F ′A′G′ = ∠F ′A′D′+∠D′A′G′ = ∠ABD′+∠D′CA = ∠CD′B−∠CAB =
180◦ − 2∠CAB. (fig. 10.3).
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Second solution. The equality ∠FOG + ∠BOC = π is equivalent to the
existence of point isogonally conjugated to O with respect to the quadrilateral
BFGC, which means that the projections of O to the sidelines are concyclic.
Since FG ∥ AE, the projection of O to FG lies on the perpendicular bisector
to AE, i.e. coincide with the midpoint of AD′. But D′ lies on the circle
BCH (H is the orthocenter of ABC), and the homothety centered at A

with coefficient 1/2 maps his circle to the nine-points-circle of ABC.

Remark. Since O and H are isogonally conjugated with respect to ABC,
they are the foci of an inellipse. The line FG also touches this ellipse, hence
the projection of H to FG lies on the nine-points-circle, and ∠FHG =
∠BAC.

4. (D.Reznik, A.Zaslavsky, D.Brodsky) Let ABC be a Poncelet triangle, A1 is
the reflection of A about the incenter I, A2 is isogonally conjugated to A1

with respect to ABC. Find the locus of points A2.

Answer. The radical axis of I and the circumcircle of ABC.

First solution. Let P be the common point of BA2 and the circumcircle
of ABC, N be the midpoint of the minor arc AC, N1 be the reflection of N
about I, and S be the midpoint of the minor arc BC. Then the quadrilateral



N1BA1S is cyclic. Let R be the common point of N1S and (ABC). It is easy
to see that the arcs RP and AN are equal.

Denote as Q the common point of the circle (SBA1) and BC. Then we have
∠QSR = ∠NBC =⌣ NC/2 =⌣ RP/2 = ∠RSP , therefore P , Q, and S
are collinear. Thus ∠IN1S = ∠BQP = (⌣ CS+ ⌣ BP )/2 =⌣ SP/2 =
∠N1RP . Also we have N1I = NI = NA = PR, hence N1PIR is an isosceles
trapezoid, and PI ∥ N1S. Finally ∠PIA = ∠N1SA = ∠IBA1 = ∠IBP , i.e
the circle IBP touches IA2, and A2 lies on the radical axis of I and (ABC)
(Fig/ 10.4).
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Second solution. Note that A1 is the inverse map of A2 with respect to
circle BIC. In fact the isogonal conjugation and the inversion give projective
maps on the line AI, these maps conserve the incenter and the excenter of
triangle ABC, and transform the midpoint S of arc BC to the infinite point.

Let SI = 1, SA1 = x. Then SA = 2− x, SA2 = 1/x, and the degree of A2

with respect to the circumcircle of ABC equals A2A·A2S = (1/x−2+x)/x =
(1/x− 1)2 = A2I

2.



Third solution. (S.Shestakov) Let B′, C ′ be the reflections of A1 about BI,
CI respectively. Then IA = IB1 = IC1. Also, by the trident theorem SI =
SB = SC, thus ∠BIB′ = ∠BIS = ∠IBS and ∠AIB′ = ∠ASB. Therefore
IB′ ∥ SB. Similarly IC ′ ∥ SC, i.e. quadrilaterals SBIC and IB′AC ′ are
homothetic. Their homothety center coincide with A2, because the lines BB′

and BA1 are symmetric with respect to AI. Hence A2A : A2I = A2I : A2S
and A2I

2 = A2A · A2S.

Remark. The assertion of the problem is a partial case of next fact: if ℓ is
a fixed line then the isogonal maps of ℓ with respect to triangles ABC are
the conics twice touching two fixed circles. In the considered case these two
circles are concentric at I.



XIX GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

The final round. Solutions
Second day. 10 form

5. (A.Teryoshin) The incircle of a triangle ABC touches BC at point D. Let M
be the midpoint of arc BAC of the circumcircle, and P , Q be the projections
of M to the external bisectors of angles B and C respectively. Prove that
the line PQ bisects AD.

First solution. Let Ic, Ib be the centers of the excircles touching the sides
AB, AC respectively. Since M bisects IaIb and MP ∥ BIb, we obtain that
P bisects BIc. Hence if P ′, P ′′ are the projections of P to BC and AB
respectively, we have P ′′B = P ′B = (p − a)/2. Since AB − BD = p − a,
P ′D = P ′B + BD = AB − P ′′B = P ′′A. Therefore PD = PA. Similarly
QD = QA, i.e. PQ is the perpendicular bisector to AD (fig. 10.5).
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Second solution. Let a point X move uniformly from B to C, and Y move
uniformly from Ic to Ib. Then the midpoint of XY also moves uniformly on
PQ. Since IA and ID are the altitudes of similar triangles IIcIb and IBC,
X and Y coincide with D and A respectively at the same time. Therefore
the midpoint of AD lies on PQ.



6. (Tran Quang Hung) Let E be the projection of the vertex C of a rectangle
ABCD to the diagonal BD. Prove that the common external tangents to
the circles AEB and AED meet on the circle AEC.
First solution. Let ω1 and ω2 be the circumcircles of triangles AEB and
AED, respectively. Let R1 and R2 be the circumradii of ω1 and ω2, respectively,
and X be their external similitude center. Then

Power(X,ω1) : Power(X,ω2) = R2
1 : R

2
2. (1)

Let lines CB and CD meet for the second time ω1 and ω2 again at points M
and N respectively. It is clear that AN and AM are diameters of ω1 and ω2,
also the triangle AND is similar to AMB, and the triangle AMN is similar
to ABD. From these we have

R1

R2
=

AM

AN
=

CD

CB
, (2)

On the other hand
CM

CN
=

sin∠ENC

sin∠EMC
=

sin∠EAD

sin∠EAB
=

ED

EB

AB

AD
=

CD3

CB3
.

Therefore
Power(C, ω1)

Power(C, ω2)
=

CB · CM

CD · CN
=

R2
1

R2
2

. (3)
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From (1) and (3), we deduce that X and C lie on a circle coaxial with ω1 and
ω2 or four points X, C, A, and E are concyclic. This completes the proof.
Remark. Similarly, we can prove that internal similitude center of ω1 and
ω2 also lies on the circumcircle of triangle AEC.
Second solution. Let AB > BC and so DE > BE. Let S be the midpoint
of arc ACE, and the inversion centered at S with radius SA map D to a
point T . Then we have to prove that T lies on the circle AEB. We have
∠ATE = ∠ATS + ∠STE = ∠SAD + ∠DES = ∠EDA − ∠ESA =
∠BAC − ∠ECA = ∠ABE, q.e.d.

7. (A.Skopenkov, I.Bogdanov) There are 43 points in the space: 3 yellow and
40 red. Any four of them are not coplanar. May the number of triangles with
red vertices hooked with the triangle with yellow vertices be equal to 2023?
Yellow triangle is hooked with the red one if the boundary of the red triangle
meet the part of the plane bounded by the yellow triangle at the unique point.
The triangles obtained by the transpositions of vertices are identical.
Answer. No.
Solution. Draw all segments joining the pairs of red points lying on the
different sides from the yellow plane (passing through three yellow points)
and color all segments intersecting the yellow triangle at internal point black,
color all remaining segments white. It is clear that the number of red triangles
hooked with the yellow one equals to the number of pairs of segments with
common vertex colored differently. Call such pair of segments a jackdaw. If
the number of red points lying on each side from the yellow plane is odd,
then the numbers of black and white segments having each red point as a
vertex have different parities, therefore the number of jackdaws is even. If the
number of red points on the each side of yellow plane is even, consider a graph
having red points as vertices and black segments as edges. The number of its
vertices with odd degree is even, therefore the common number of jackdaws
is also even.

8. (L.Shatunov) A triangle ABC is given. Let ω1, ω2, ω3, ω4 be circles centered
at points X, Y , Z, T respectively such that each of lines BC, CA, AB cuts
off on them four equal chords. Prove that the centroid of ABC divides the
segment joining X and the radical center of ω2, ω3, ω4 in the ratio 2 : 1 from
X.
Solution. Prove that the circumcircle Ω of triangle ABC is the nine-points-
circle of triangle Y ZT . In fact, let M be the midpoint of Y Z, Ma, Mb, Mc be



the projections of M to BC, CA, AB respectively, Ya, Za be the projections
of Y , Z to BC. Then Ma is the midpoint of YaZa and since BC cuts off
equal chords on ω2, ω3, we obtain that the degrees of Ma with respect to
these circles are equal. Similarly the degrees of Mb, Mc with respect to these
circles are equal. Therefore the projections of M to the sideline of ABC are
collinear (on the radical axis), i.e. M lies on Ω. Similarly the midpoints of
segments Y T , ZT , XY , XZ, XT lies on Ω. Thus the quadruple X, Y , Z,
T is orthocentric, and Ω is the nine-points-circle of triangles XY Z, Y ZT ,
XZT , XY T .

Now let O be the center of Ω, H be the orthocenter of ABC, H ′ be the
center of circle Y ZT , X ′ be the radical center of ω2, ω3, ω4, and Ht, Rt be
the projections of H and X ′ respectively to Y Z. Then HHt is parallel to the
Simson line X ′Rt of M and passes through the orthocenter of ABC. Hence
HHt is the Steiner line of M , and X ′ is the midpoint of HH ′. Also O is
the midpoint of XH ′ (because X is the orthocenter of Y ZT ). Therefore the
centroid G of ABC is also the centroid of points H, X, H ′, i.e G lies on
XX ′ and GX = 2GX ′.

Remark. We can consider as a partial case of ω1, ω2, ω3, ω4 the incircle and
three excircles of triangle. In this case the assertion of the problem is well
known.


