XIX GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN
 The final round. Solutions
 First day. 8 form

1. (A.Zaslavsky) Let $A B C$ be an isosceles obtuse-angled triangle, and D be a point on its base $A B$ such that $A D$ equals to the circumradius of triangle $B C D$. Find the value of $\angle A C D$.
Answer. 30° or 150°.
Solution. Let O be the circumcenter of triangle $B C D, M$ be the midpoint of $C D$, and H be the projection of D to $A C$. Then $\angle D O M=\angle D O C / 2=$ $\angle D B C=\angle D A C$ and $D O=D A$ (fig. 8.1). Therefore the triangles $D A H$ and $D O M$ are congruent, i.e. $D H=D M=D C / 2$ and $\angle D C H=30^{\circ}$. Hence the angle $A C D$ equals 30°, if H lies on segment $A C$, otherwise it equals 150°.

Fig. 8.1
Remark. The problem may also be solved by the sines law.
2. (A.Teryoshin) The bisectors of angles A, B, and C of triangle $A B C$ meet for the second time its circumcircle at points A_{1}, B_{1}, C_{1} respectively. Let A_{2}, B_{2}, C_{2} be the midpoints of segments $A A_{1}, B B_{1}, C C_{1}$ respectively. Prove that the triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ are similar.
Solution. Since A_{1}, B_{1}, C_{1} are the midpoints of arcs $B C, C A, A B$ respectively, the sum of arcs $B_{1} C$ and $A_{1} C_{1}$ equals a cemicircle, thus $C C_{1}$ and $A_{1} B_{1}$ are perpendicular. Hence $A_{1} A, B_{1} B, C_{1} C$ are the altitudes of triangle $A_{1} B_{1} C_{1}$, and their common point I is its orthocenter. The points A_{2}, B_{2}, C_{2} are the projections of the circumcenter O of $A B C$ to $A A_{1}, B B_{1}, C C_{1}$, therefore they lie on the circle with diameter $O I$. Then $\angle B_{2} A_{2} C_{2}=\angle B_{2} I C_{2}=\angle B_{1} A_{1} C_{1}$
(fig. 8.2). Similarly we obtain that $\angle A_{1} B_{1} C_{1}=\angle A_{2} B_{2} C_{2}$ and thus the triangles are similar.

Fig. 8.2

Remark. The required assertion is a partial case of the following fact. If H is the orthocenter of triangle $A B C, P$ is an arbitrary point of the plane, and $A^{\prime}, B^{\prime}, C^{\prime}$ are the projections of P to $A H, B H, C H$ respectively, then the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are similar.
3. (A.Terteryan) The altitudes of a parallelogram are greater than 1. Does this yield that the unit square may be covered by this parallelogram?

Answer. No.
Solution. Firstly consider how the square may be covered by a strip with width h. Since the projections of diagonals to the perpendicular to the strip can not be greater than h, the angles between the diagonals and this perpendicular have to be sufficiently large. Choose h such that the critical value of this angle equals 44°, then the angle between the boundary of the strip and some sideline of the square is less than 1°.

Take now a rhombus with altitude h. If the unit square is covered by this rhombus, then the angles between each sideline of the rhombus and some sideline of the square is less than 1°. If this sideline is the same for both
sideline of the rhombus, then the acute angle of the rhombus is less than 2°. In the opposite case the acute angle is greater than 88°. Therefore the unit square can not be covered by a rhombus with altitude h and acute angle 45°.

Remark. From the solution we see that the square covered by a rhombus with angle 45° may be covered by any parallelogram having greater or equal altitudes. Thus the minimal value of altitude warranting that the unit square can be covered is $\sqrt{2} \sin 67,5^{\circ}$. The square may be covered by a rhombus with such altitude by two ways (fig. 8.3).

Fig. 8.3
4. (A.Zaslavsky) Let $A B C$ be an acute-angled triangle, O be its circumcenter, $B M$ be a median, and $B H$ be an altitude. Circles $A O B$ and $B H C$ meet for the second time at point E, and circles $A H B$ and $B O C$ meet at point F. Prove that $M E=M F$.
Solution. Let the extension of $B H$ meet the circumcircle at point D. Prove that E lies also on circles $D C O$ and $A D H$. In fact let E^{\prime} be the second common point of circles $A B O$ and $D C O$. Then $\angle B E^{\prime} C=2 \pi-\angle B E^{\prime} O-$ $\angle C E^{\prime} O=B A O+\angle C D O=\pi-(\angle A O B+\angle C O D) / 2=\pi / 2$, i.e. E^{\prime} coincide with E. Similarly F lies on circles $C H D$ and $A O D$.
Note now that $\angle O E H=2 \pi-\angle O E B-\angle B E H=\angle O A B+\angle B C H=$ $\angle C B H+\angle B C H=\pi / 2$, therefore E lies on the circle with diameter $O H$. Similarly F lies on this circle. It is clear that M also lies on this circle.
Prove that the reflections of lines $A F, B F, C F, D F$ about the bisectors of angles A, B, C, D respectively meet at E. Let P, Q, R, S be the projections of F to $A B, B C, C D, D A$ respectively. Then $\angle P S R+\angle P Q R=\angle F S P+$ $\angle F S R+\angle F Q P+\angle F Q R=\angle F A B+\angle F R C+\angle F B A+\angle F D C=\pi$,
because $\angle A F B=\angle C F D=\pi / 2$. Thus P, Q, R, S are concyclic. Then the reflections $P^{\prime}, Q^{\prime}, R^{\prime}, S^{\prime}$, of F about $A B, B C, C D, D A$ are also concyclic. Since, for example, $A P^{\prime}=A F=A S^{\prime}$, the perpendicular bisector to $P^{\prime} S^{\prime}$ coincide with the bisector of angle $P^{\prime} A S^{\prime}$, which is symmetric to $A F$ about the bisector of angle A. Hence the reflections of $A F, B F, C F, D F$ about the corresponding bisectors meet at the circumcenter $E^{\prime \prime}$ of $P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$. It is easy to see that the angles $B E^{\prime \prime} C$ and $A E^{\prime \prime} D$ are right, i.e. $E^{\prime \prime}$ coincide with E.

Finally we obtain that $\angle E H M=\angle E B C=\angle F C A=\angle F H M$ and since E, F, H, M are concyclic, $E M=F M$ (fig. 8.4).

Fig. 8.4
Remark. Since the lines joining E and F with the vertices of $A B C D$ are symmetric about the bisectors of its angles, these points are the foci of an inellipse. Also they are symmetric about the line joining the midpoints of $A C$ and $B D$.

XIX GEOMETRICAL OLYMPIAD IN HONOUR OF
 I.F.SHARYGIN
 The final round. Solutions Second day. 8 form

5. (L.Popov) The median $C M$ and the altitude $A H$ of an acute-angled triangle $A B C$ meet at point O. A point D lies outside the triangle in such a way that $A O C D$ is a parallelogram. Find the length of $B D$, if $M O=a, O C=b$.

Answer. $2 a+b$.
Solution. Let K be a point on the ray $C M$ such that $C M=M K$. Then $C A K B$ is a parallelogram, i.e. $A K=B C$ and $A K \| B C$. Also $A O=C D$ and $\angle B C D=\angle O A K=90^{\circ}$ because $A H$ is the altitude (fig. 8.5). Therefore the triangles $B C D$ and $K A O$ are congruent, i.e. $B D=O K=2 C M-C O=$ $2 a+b$.

Fig. 8.5
6. (F.Nilov) For which n the plane may be paved by congruent figures bounded by n arcs of circles?

Answer. $n>2$.
Solution. Take a square $A B C D$ and replace the sides $A B, A D$ by equal arcs directed outside it, and replace the sides $B C, C D$ by the same arcs
directed inside the square. It is clear that the plane may be paved by the obtained figures bounded by four arcs. Also the plane may be paved by the strip composed from k such figures, and this strip is bounded by $2 k+2$ arcs. Finally we can choose the radius of arcs such that the arcs $A B$ and $A D$ form a cemicircle (fig. 8.6). The obtained figure is bounded by three arcs. Composing a strip from k figures we obtain a figure bounded by $2 k+1$ arcs.

Fig. 8.6
If $n=2$, then the figure is a crescent and its external arc is longer than the internal one. Hence there exists a point on the external arc belonging to two other crescents. It is clear that the angle formed by their external arcs can not be paved.
7. (G.Filippovsky) The bisector of angle A of triangle $A B C$ meet its circumcircle ω at point W. The circle s with diameter $A H$ (H is the orthocenter of $A B C$) meets ω for the second time at point P. Restore the triangle $A B C$ if the points A, P, W are given.
Solution. By the points A, P, W restore ω, its center O and the point A^{\prime} opposite to A. Since $\angle A P A^{\prime}=\angle A P H=90^{\circ}, H$ lies on $P A^{\prime}$. Since $\angle A B A^{\prime}=\angle A C A^{\prime}=90^{\circ}$, the quadrilateral $H B A^{\prime} C$ is a parallelogram, i.e. H and A^{\prime} are symmetric with respect to the midpoint M of $B C$. Hence we can restore M, as the common point of $P A^{\prime}$ and $O W$, finally draw a perpendicular through M to $O W$ and find its common points B, C with ω (fig. 8.7).

Fig. 8.7
8. (D.Dyomin, I.Kykharchyk) Two circles ω_{1} and ω_{2} meeting at point A and a line a are given. Let $B C$ be an arbitrary chord of ω_{2} parallel to a, and E, F be the second common points of $A B$ and $A C$ respectively with ω_{1}. Find the locus of common points of lines $B C$ and $E F$.

Answer. Let $X_{1} X_{2}$ be the diameter of ω_{2} perpendicular to a, and Y_{1}, Y_{2} be the second common point of $A X_{1}, A X_{2}$ respectively with ω_{1}. Then the required locus is the interval bounded by the common points of the tangents to ω_{2} at X_{1}, X_{2} and the tangents to ω_{1} at Y_{1}, Y_{2} respectively.
Solution. Let $B_{1} C_{1}, B_{2} C_{2}$ be two dispositions of $B C$, and $E_{1} F_{1}, E_{2} F_{2}$ be two corresponding dispositions of $E F$. Since the $\operatorname{arcs} B_{1} B_{2}$ and $C_{1} C_{2}$ are equal, the arcs $E_{1} F_{1}$ and $E_{2} F_{2}$ are also equal, i.e. $E_{1} F_{1} \| E_{2} F_{2}$. Also the chords $B_{i} C_{i}$ and $E_{i} F_{i}$ bound the arcs with the same angular measure (fig. 8.8). Therefore when the line $B C$ moves uniformly, $E F$ also moves uniformly, and their common point moves on the line. Clearly the boundary dispositions of this points are the common points of the tangents.

Fig. 8.8

XIX GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The final round. Solutions
 First day. 9 form

1. (E.Bakaev) The ratio of the median $A M$ of a triangle $A B C$ to the side $B C$ equals $\sqrt{3}: 2$. The points on the sides of $A B C$ dividing these side into 3 equal parts are marked. Prove that some 4 of these 6 points are concyclic.
First solution. using the median formula we obtain $A M^{2}=\left(2 b^{2}+2 c^{2}-\right.$ $\left.a^{2}\right) / 4=3 a^{2} / 4$, i.e. $b^{2}+c^{2}=2 a^{2}$. Then the square of the median from B equals $\left(2 a^{2}+2 c^{2}-b^{2}\right) / 4=3 c^{2} / 4$, similarly the square of the median from C equals $3 b^{2} / 4$. Therefore the triangle formed by the medians is similar to $A B C$.

Now let A_{1}, A_{2} lie on $B C, B_{1}, B_{2}$ lie on $C A$, and C_{1}, C_{2} lie on $A B$ in such a way that $B A_{1}=A_{1} A_{2}=A_{2} C, C B_{1}=B_{1} B_{2}=B_{2} A, A C_{1}=C_{1} C_{2}=C_{2} B$. Then, for example, the median of triangle $B C_{1} A_{2} C_{1} A_{1}=2 A M / 3$, i.e. the triangle $A_{1} B_{1} C_{1}$ is similar to the triangle formed by the medians and the triangle $A B C$. Hence $\angle A_{1} B_{1} C_{1}=\angle A=\angle A_{1} C_{2} B$ and the circle $A_{1} B_{1} C_{1}$ passes through C_{2} (fig. 9.1).

Fig. 9.1
Second solution. Let segments $B_{1} C_{2}$ and $A_{1} C_{1}$ meet at point O. Prove that these segments are diagonals of a cyclic quadrilateral. Find in which ratios they divide one other: $C_{1} O=A_{1} O=x, B_{1} O=3 y, C_{2} O=y$. Also $A_{1} C_{1}=\frac{2}{3} A M, B_{1} C_{2}=\frac{2}{3} B C$, thus $A_{1} C_{1}: B_{1} C_{2}=A M: B C=\frac{\sqrt{3}}{2}$. Therefore $\frac{2 x}{4 y}=\frac{\sqrt{3}}{2}$, i.e. $x^{2}=3 y^{2}$, hence $B_{1} O \cdot C_{2} O=C_{1} O \cdot A_{1} O$. Thus the quadrilateral $B_{1} C_{1} C_{2} A_{1}$ is cyclic.
2. (A.Yuran) Can a regular triangle be placed inside a regular hexagon in such a way that all vertices of the triangle were seen from each vertex of the hexagon? (Point A is seen from B, if the segment $A B$ dots not contain internal points of the triangle.)

Answer. No.
Solution. All points such that the vertices of triangle $X Y Z$ are seen from them lie inside three angles vertical to the angles of the triangle. If each of these angles contains exactly two vertices of the hexagon, then its main diagonals can not be concurrent. In the other case two non-adjacent vertices of the hexagon lie on the same angle, for example non-adjacent vertices A and B lie on the angle vertical to the angle X. Then $\angle A X B \leq 60^{\circ}$, and the $\operatorname{arc} A X B$ lies outside the hexagon.
3. (P.Bibikov) Points $A_{1}, A_{2}, B_{1}, B_{2}$ lie on the circumcircle of a triangle $A B C$ in such a way that $A_{1} B_{1}\left\|A B, A_{1} A_{2}\right\| B C, B_{1} B_{2} \| A C$. The line $A A_{2}$ and $C A_{1}$ meet at point A^{\prime}, and the lines $B B_{2}$ and $C B_{1}$ meet at point B^{\prime}. Prove that all lines $A^{\prime} B^{\prime}$ concur.
First solution. Let $C A_{1}, C B_{1}$ meet $A B$ at points X, Y respectively. Since the arcs $C A_{2}, B A_{1}, A B_{1}$, and $C B_{2}$ are equal, we obtain that $A A^{\prime} \| B^{\prime} Y$, $B B^{\prime} \| A^{\prime} X$, and the triangles $A A^{\prime} X$ and $Y B^{\prime} B$ are homothetic. Their homothety center Z lies on the line $A B$ and satisfies to $Z X \cdot Z Y=Z A \cdot Z B$. Since $\angle A C X=\angle B C Y$, the circles $A B C$ and $C X Y$ are tangent. Therefore Z lies on their common tangent and do not depend on A^{\prime}, B^{\prime} (fig.9.3).

Fig. 9.3
Second solution (sketch). Since the correspondence between A_{1} and A_{2} is projective, the locus of A^{\prime} is some conic passing through A and C. When A_{1} lies on the internal or the external bisector of angle C, the lines $A A_{2}$ and $C A_{1}$ are parallel, therefore this conic is an equilateral hyperbola with asymptotes parallel to these bisectors. Similarly the locus of B^{\prime} is an equilateral hyperbola passing through B and C with asymptotes parallel to the bisectors. The correspondence between A^{\prime} and B^{\prime} is also projective, and both points coincide with C and infinite points at the same time. Therefore all lines $A^{\prime} B^{\prime}$ concur at the fourth common point of two hyperbolas.
4. (G.Galyapin) The incircle ω of a triangle $A B C$ centered at I touches $B C$ at point D. Let P be the projection of the orthocenter of $A B C$ to the median from A. Prove that the circle $A I P$ and ω cut off equal chords on $A D$.
Solution. Let M be the midpoint of $B C, N$ be the midpoint of $A D, E$ be the second common point of $A D$ and ω, and F b the common point of $M I$ with the circle DIE. It is known that the radii of circles $B C P$ and $A B C$ are equal, hence $M P \cdot M A=M B^{2}$. Also M, I, N are collinear (on the Gauss line of the degenerated quadrilateral $A B D C$). Finally the quadrilateral $D B^{\prime} E C^{\prime}$ is harmonic, where B^{\prime} and C^{\prime} are the touching points of ω with $A C$ and $A B$, hence the tangent to ω at E passes through the point $Z=B^{\prime} C^{\prime} \cap B C$, forming a harmonic quadruple with B, C, D. Then each circle passing through D and
Z is orthogonal to the circle with diameter $B C$, partially we have this for the circle DIE (with diameter $I Z$). Therefore $M I \cdot M F=M B^{2}=M P \cdot M A$, i.e. $A F I P$ is a cyclic quadrilateral (fig. 9.4). Then the degrees of N with respect to ω and $(A I P)$ are equal which yields the required equality.

Fig. 9.4

Remark. Point F is the inversion image of N and I with respect to the circle with diameter $B C$ and ω respectively.

XIX GEOMETRICAL OLYMPIAD IN HONOUR OF
 I.F.SHARYGIN
 The final round. Solutions Second day. 9 form

5. (A.Mardanov) A point D lie on the lateral side $B C$ of an isosceles triangle $A B C$. The ray $A D$ meets the line passing through B and parallel to the base $A C$ at point E. Prove that the tangent to the circumcicle of triangle $A B D$ at B bisects $E C$.

Solution. Let M be the common point of the tangent with $C E$. Then $\angle C B M=\angle D A B$, thus $\angle M B E=\angle C A D$. On the other hand $B C: B E=$ $(B C: A C)(A C: B E)=(A B: A C)(C D: B D)=\sin \angle D A C: \sin \angle D A B$. Therefore $B M$ is a median of triangle $B C E$ (fig.9.5).

Fig. 9.5
6. (G.Zabaznov) Let $A B C$ be an acute-angled triangle with circumcircle Ω. Points H and M are the orthocenter and the midpoint of $B C$ respectively. The line $H M$ meets the circumcircle ω of triangle $B H C$ at point $N \neq H$. Point P lies on the arc $B C$ of ω not containing H in such a way that $\angle H M P=90^{\circ}$. The segment $P M$ meets Ω at point Q. Points B^{\prime} and C^{\prime} are the reflections of A about B and C respectively. Prove that the circumcircles of triangles $A B^{\prime} C^{\prime}$ and $P Q N$ are tangent.
Solution. Let T be the point of Ω opposite to A (T is the circumcenter of triangle $A B^{\prime} C^{\prime}$ and lie on $M H$), and Q^{\prime} be the reflection of A about Q.

Since the circle Ω and ω are symmetric with respect to $M, M Q \cdot M P=$ $M H \cdot M N=M T \cdot M N$, i.e. T lies on the circle $P Q N$. Also the triangles $M Q N$ and $M H P$ (congruent to $M T P$) are similar, thus $\angle N H P=\angle N Q M$ and the radii of circles $P Q N$ and ω are equal. Therefore the circle $P Q N$ is the reflection of Ω about $Q T$ and touches the circle $A B^{\prime} C^{\prime}$ at Q^{\prime} (fig. 9.6).

Fig. 9.6
7. (F.Bakharev) Let H be the orthocenter of triangle T . The sidelines of triangle T_{1} pass through the midpoints of T and are perpendicular to the corresponding
bisectors of T . The vertices of triangle T_{2} bisect the bisectors of T . Prove that the lines joining H with the vertices of T_{1} are perpendicular to the sidelines of T_{2}.
Solution. Prove that the lines joining H with the vertices of T_{1} are the radical axes of circles having the bisectors of T as diameters. This yields the required assertion. Since these radical axes are perpendicular to the lines joining the centers, it is sufficient to prove that the vertices of T_{1} have the same degrees with respect to the corresponding pairs of circles. We prove that the vertex of T_{1} is the radical center of two circles having bisectors as diameters and the incircle of T. Since the sideline of T_{1} is perpendicular to the bisector of T (i.e the centers line of he incircle and the circle having this bisector as diameter), it is sufficient to prove that the degrees of the midpoint of the side with respect to these circles are equal.
Denote the vertices of T by A, B, and C, the midpoint of $B C$ by M, the foot of the corresponding bisector by L, the foot of the altitude by D, and the touching point with the incircle by T. We have to prove that $M T^{2}=$ $M L \cdot M D$. If the sidelengths are a, b и c, then $M T=|b-c| / 2, M L=$ $a|b-c| / 2(b+c), M D=\left|b^{2}-c^{2}\right| / 2 a$, which yields the required equality.
8. (M.Didin, I.Frolov) Let $A B C$ be a triangle with $\angle A=120^{\circ}$, I be the incenter, and M be the midpoint of $B C$. The line passing through M and parallel to $A I$ meets the circle with diameter $B C$ at points E and $F(A$ and E lie on the same semiplane with respect to $B C$). The line passing through E and perpendicular to $F I$ meets $A B$ and $A C$ at points P and Q respectively. Find the value of $\angle P I Q$.
Answer. 90°.
Solution. Note that the circumcircle of $A B C$ forms equal angles with circles $B C I$ and $B C E$. Therefore the inversion about the circumcircle transposes these circles, and the circumcenter O of $A B C$ is their internal homothety center. Since $A I$ passes through the center of circle $B I C$ and is parallel to $E F$, we obtain that O lies on $F I$.
Let P^{\prime}, Q^{\prime} be the reflections of C and B about $B I$ and $C I$ respectively, E^{\prime} and M be the midpoints of $P^{\prime} Q^{\prime}$ and $B C$ respectively. Then $B I Q^{\prime}, C I P^{\prime}$ are regular triangles, and the vector $E^{\prime} M$ equals a semisum of vectors $Q^{\prime} B$ and $P^{\prime} C$. Since the angle between these vectors equals $30^{\circ}=\pi-\angle B I C$, $E^{\prime} M=B C / 2$. Also $E^{\prime} M$ and the altitude of triangle $B I C$ form equal angles with the bisector of angle $B I C$, hence $E^{\prime} M \| A I$, and E^{\prime} coincide with c E.

Now use next
Lemma. Let the sides of triangle $X Y Z$ be the bases of isosceles triangles $X Y Z^{\prime}, Y Z X^{\prime}, Z X Y^{\prime}$ lying outside $X Y Z$ and such that $\angle X^{\prime} Z Y=\angle Y^{\prime} Z X=$ $\pi / 2-\angle Z^{\prime} X Y$. Then $Z Z^{\prime} \perp X^{\prime} Y^{\prime}$.
Proof. Let $X^{\prime \prime}, Y^{\prime \prime}$ be the reflections of Z about X, Y, and P be the projection of Z to $X^{\prime \prime} Y^{\prime \prime}$. Then $Z P X^{\prime \prime} Y, Z P Y^{\prime \prime} X$ are cyclic quadrilaterals, therefore $\angle Y P X^{\prime \prime}=\angle X P Y^{\prime \prime}=\angle X^{\prime} Z Y$ and the bisector $Z P$ of angle $X P Y$ meets the perpendicular bisector to $X Y$ at point Z^{\prime}.

Applying the lemma to triangles $B I Q^{\prime}, C I P^{\prime}$, and $B O C$ we obtain that $O I \perp P^{\prime} Q^{\prime}$ (fig. 9.8). Hence P^{\prime}, Q^{\prime} coincide with P, Q, and $\angle P I Q=90^{\circ}$.

Fig. 9.8

Remark. The lemma was proposed as a problem on XXX Tournament of Towns.

XIX GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The final round. Solutions First day. 10 form

1. (A.Mardanov) Let M be the midpoint of cathetus $A B$ of triangle $A B C$ with right angle A. Point D lies on the median $A N$ of triangle $A M C$ in such a way that the angles $A C D$ and $B C M$ are equal. Prove that the angle $D B C$ is also equal to these angles.
First solution. Since $C M$ is a median, $A C: B C=\sin \angle M C B: \sin \angle M C A=$ $\sin \angle A C D: \sin \angle D A C=A D: C D$, i.e. $A C: A D=B C: C D$. Also $\angle C A D=\angle A C M=\angle B C D$. Therefore the triangles $A C D$ and $B D C$ are similar, and $\angle D B C=\angle A C D$ (fig. 10.1).

Fig. 10.1

Second solution. A point D^{\prime} isogonally conjugated to D with respect to $A B C$ is the projection of A to $C M$. Hence $M B^{2}=M A^{2}=M D^{\prime} \cdot M C$, the triangles $B M C$ and $D^{\prime} M B$ are similar, and $\angle D B C=\angle D^{\prime} B M=\angle B C M$.
Remark. the point D^{\prime} is the projection of the orthocenter of $A B C$ to the median, i.e. a Humpty point. Thus D is a Dumpty point.
2. (M.Plotnikov, B.Frenkin) The Euler line of a scalene triangle touches its incircle. Prove that this triangle is obtuse-angled.

First solution. Let H be the orthocenter of triangle $A B C, O$ be its circumcenter, I be the incenter, and $A^{\prime}, B^{\prime}, C^{\prime}$ be the touching points of the incircle with $B C, C A, A B$ respectively. Suppose that $A B C$ is not an obtuse-angled
triangle, and the touching point of $O H$ with the incircle lies on the arc $B^{\prime} C^{\prime}$. The O, H lie inside or on the boundary of triangle $A B C$, thus they lie inside the quadrilateral $I B^{\prime} A C^{\prime}$. therefore the projections of O and H to $A B$ lie on the segment $A C^{\prime}$. But the touching point of the incircle with any side lies between the midpoint of this side and the foot of the corresponding altitude - a contradiction.

Second solution (sketch). Use the following fact: The Euler line of an acute-angled scalene triangle intersects the longest and the shortest sides, and the Euler line of an obtuse-angled triangle intersects two major sides. Let the Euler line of a triangle divides it into a triangle and a quadrilateral. Prove that I lies inside the quadrilateral if and only if the original triangle is obtuse-angled.
Fix the circumcircle and the incircle of a triangle and "rotate" the triangle between them. The form of a part containing I may change when I lies on the Euler line, or when this line passes through one of vertices of the triangle. But in the first case the triangle is isosceles, i.e. one vertex lie on the line $O I$, and when the triangle passes through this position the configuration changes to the symmetric one. Therefore the form of the part does not change. In the second case the Euler line is a median of a right-angled triangle, and I lies in the part containing its minor cathetus. For an acute-angled triangle this part is also a triangle, and for an obtuse-angled triangle it is a quadrilateral.
3. (M.Didin, I.Frolov) Let ω be the circumcircle of triangle $A B C O$ be its center, A^{\prime} be the point of ω opposite to A, and D be a point on a minor arc $B C$ of ω. A point D^{\prime} is the reflection of D about $B C$. The line $A^{\prime} D^{\prime}$ meets ω for the second time at point E. The perpendicular bisector to $D^{\prime} E$ meets $A B$ and $A C$ at points F and G respectively. Prove that $\angle F O G=180^{\circ}-2 \angle B A C$.
First solution. Let the line passing through D^{\prime} and perpendicular to $A^{\prime} D^{\prime}$ meet $A B$ and $A C$ at points F^{\prime} and G^{\prime} respectively. Since $\angle A E A^{\prime}=90^{\circ}$, we have $A F=F F^{\prime}, A G=G G^{\prime}$, and $\angle F O G=\angle F^{\prime} A^{\prime} G^{\prime}$. Since $\angle A B A^{\prime}=$ $\angle A C A^{\prime}=90^{\circ}, A^{\prime} B F^{\prime} D^{\prime}$ and $A^{\prime} G^{\prime} C D^{\prime}$ are cyclic quadrilaterals, therefore $\angle F^{\prime} A^{\prime} G^{\prime}=\angle F^{\prime} A^{\prime} D^{\prime}+\angle D^{\prime} A^{\prime} G^{\prime}=\angle A B D^{\prime}+\angle D^{\prime} C A=\angle C D^{\prime} B-\angle C A B=$ $180^{\circ}-2 \angle C A B$. (fig. 10.3).

Fig. 10.3
Second solution. The equality $\angle F O G+\angle B O C=\pi$ is equivalent to the existence of point isogonally conjugated to O with respect to the quadrilateral $B F G C$, which means that the projections of O to the sidelines are concyclic. Since $F G \| A E$, the projection of O to $F G$ lies on the perpendicular bisector to $A E$, i.e. coincide with the midpoint of $A D^{\prime}$. But D^{\prime} lies on the circle $B C H$ (H is the orthocenter of $A B C$), and the homothety centered at A with coefficient $1 / 2$ maps his circle to the nine-points-circle of $A B C$.
Remark. Since O and H are isogonally conjugated with respect to $A B C$, they are the foci of an inellipse. The line $F G$ also touches this ellipse, hence the projection of H to $F G$ lies on the nine-points-circle, and $\angle F H G=$ $\angle B A C$.
4. (D.Reznik, A.Zaslavsky, D.Brodsky) Let $A B C$ be a Poncelet triangle, A_{1} is the reflection of A about the incenter I, A_{2} is isogonally conjugated to A_{1} with respect to $A B C$. Find the locus of points A_{2}.
Answer. The radical axis of I and the circumcircle of $A B C$.
First solution. Let P be the common point of $B A_{2}$ and the circumcircle of $A B C, N$ be the midpoint of the minor arc $A C, N_{1}$ be the reflection of N about I, and S be the midpoint of the minor arc $B C$. Then the quadrilateral
$N_{1} B A_{1} S$ is cyclic. Let R be the common point of $N_{1} S$ and ($A B C$). It is easy to see that the arcs $R P$ and $A N$ are equal.
Denote as Q the common point of the circle $\left(S B A_{1}\right)$ and $B C$. Then we have $\angle Q S R=\angle N B C=\smile N C / 2=\smile R P / 2=\angle R S P$, therefore P, Q, and S are collinear. Thus $\angle I N_{1} S=\angle B Q P=(\smile C S+\smile B P) / 2=\smile S P / 2=$ $\angle N_{1} R P$. Also we have $N_{1} I=N I=N A=P R$, hence $N_{1} P I R$ is an isosceles trapezoid, and $P I \| N_{1} S$. Finally $\angle P I A=\angle N_{1} S A=\angle I B A_{1}=\angle I B P$, i.e the circle $I B P$ touches $I A_{2}$, and A_{2} lies on the radical axis of I and $(A B C)$ (Fig/ 10.4).

Fig. 10.4
Second solution. Note that A_{1} is the inverse map of A_{2} with respect to circle $B I C$. In fact the isogonal conjugation and the inversion give projective maps on the line $A I$, these maps conserve the incenter and the excenter of triangle $A B C$, and transform the midpoint S of arc $B C$ to the infinite point. Let $S I=1, S A_{1}=x$. Then $S A=2-x, S A_{2}=1 / x$, and the degree of A_{2} with respect to the circumcircle of $A B C$ equals $A_{2} A \cdot A_{2} S=(1 / x-2+x) / x=$ $(1 / x-1)^{2}=A_{2} I^{2}$.

Third solution. (S.Shestakov) Let B^{\prime}, C^{\prime} be the reflections of A_{1} about $B I$, $C I$ respectively. Then $I A=I B_{1}=I C_{1}$. Also, by the trident theorem $S I=$ $S B=S C$, thus $\angle B I B^{\prime}=\angle B I S=\angle I B S$ and $\angle A I B^{\prime}=\angle A S B$. Therefore $I B^{\prime} \| S B$. Similarly $I C^{\prime} \| S C$, i.e. quadrilaterals $S B I C$ and $I B^{\prime} A C^{\prime}$ are homothetic. Their homothety center coincide with A_{2}, because the lines $B B^{\prime}$ and $B A_{1}$ are symmetric with respect to $A I$. Hence $A_{2} A: A_{2} I=A_{2} I: A_{2} S$ and $A_{2} I^{2}=A_{2} A \cdot A_{2} S$.
Remark. The assertion of the problem is a partial case of next fact: if ℓ is a fixed line then the isogonal maps of ℓ with respect to triangles $A B C$ are the conics twice touching two fixed circles. In the considered case these two circles are concentric at I.

XIX GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN
 The final round. Solutions Second day. 10 form

5. (A.Teryoshin) The incircle of a triangle $A B C$ touches $B C$ at point D. Let M be the midpoint of arc $B A C$ of the circumcircle, and P, Q be the projections of M to the external bisectors of angles B and C respectively. Prove that the line $P Q$ bisects $A D$.

First solution. Let I_{c}, I_{b} be the centers of the excircles touching the sides $A B, A C$ respectively. Since M bisects $I_{a} I_{b}$ and $M P \| B I_{b}$, we obtain that P bisects $B I_{c}$. Hence if $P^{\prime}, P^{\prime \prime}$ are the projections of P to $B C$ and $A B$ respectively, we have $P^{\prime \prime} B=P^{\prime} B=(p-a) / 2$. Since $A B-B D=p-a$, $P^{\prime} D=P^{\prime} B+B D=A B-P^{\prime \prime} B=P^{\prime \prime} A$. Therefore $P D=P A$. Similarly $Q D=Q A$, i.e. $P Q$ is the perpendicular bisector to $A D$ (fig. 10.5).

Fig. 10.5

Second solution. Let a point X move uniformly from B to C, and Y move uniformly from I_{c} to I_{b}. Then the midpoint of $X Y$ also moves uniformly on $P Q$. Since $I A$ and $I D$ are the altitudes of similar triangles $I I_{c} I_{b}$ and $I B C$, X and Y coincide with D and A respectively at the same time. Therefore the midpoint of $A D$ lies on $P Q$.
6. (Tran Quang Hung) Let E be the projection of the vertex C of a rectangle $A B C D$ to the diagonal $B D$. Prove that the common external tangents to the circles $A E B$ and $A E D$ meet on the circle $A E C$.
First solution. Let ω_{1} and ω_{2} be the circumcircles of triangles $A E B$ and $A E D$, respectively. Let R_{1} and R_{2} be the circumradii of ω_{1} and ω_{2}, respectively, and X be their external similitude center. Then

$$
\begin{equation*}
\operatorname{Power}\left(X, \omega_{1}\right): \operatorname{Power}\left(X, \omega_{2}\right)=R_{1}^{2}: R_{2}^{2} . \tag{1}
\end{equation*}
$$

Let lines $C B$ and $C D$ meet for the second time ω_{1} and ω_{2} again at points M and N respectively. It is clear that $A N$ and $A M$ are diameters of ω_{1} and ω_{2}, also the triangle $A N D$ is similar to $A M B$, and the triangle $A M N$ is similar to $A B D$. From these we have

$$
\begin{equation*}
\frac{R_{1}}{R_{2}}=\frac{A M}{A N}=\frac{C D}{C B}, \tag{2}
\end{equation*}
$$

On the other hand

$$
\frac{C M}{C N}=\frac{\sin \angle E N C}{\sin \angle E M C}=\frac{\sin \angle E A D}{\sin \angle E A B}=\frac{E D}{E B} \frac{A B}{A D}=\frac{C D^{3}}{C B^{3}} .
$$

Therefore

$$
\begin{equation*}
\frac{\operatorname{Power}\left(C, \omega_{1}\right)}{\operatorname{Power}\left(C, \omega_{2}\right)}=\frac{C B \cdot C M}{C D \cdot C N}=\frac{R_{1}^{2}}{R_{2}^{2}} . \tag{3}
\end{equation*}
$$

Рис. 10.6

From (1) and (3), we deduce that X and C lie on a circle coaxial with ω_{1} and ω_{2} or four points X, C, A, and E are concyclic. This completes the proof.
Remark. Similarly, we can prove that internal similitude center of ω_{1} and ω_{2} also lies on the circumcircle of triangle $A E C$.
Second solution. Let $A B>B C$ and so $D E>B E$. Let S be the midpoint of arc $A C E$, and the inversion centered at S with radius $S A$ map D to a point T. Then we have to prove that T lies on the circle $A E B$. We have $\angle A T E=\angle A T S+\angle S T E=\angle S A D+\angle D E S=\angle E D A-\angle E S A=$ $\angle B A C-\angle E C A=\angle A B E$, q.e.d.
7. (A.Skopenkov, I.Bogdanov) There are 43 points in the space: 3 yellow and 40 red. Any four of them are not coplanar. May the number of triangles with red vertices hooked with the triangle with yellow vertices be equal to 2023 ? Yellow triangle is hooked with the red one if the boundary of the red triangle meet the part of the plane bounded by the yellow triangle at the unique point. The triangles obtained by the transpositions of vertices are identical.
Answer. No.
Solution. Draw all segments joining the pairs of red points lying on the different sides from the yellow plane (passing through three yellow points) and color all segments intersecting the yellow triangle at internal point black, color all remaining segments white. It is clear that the number of red triangles hooked with the yellow one equals to the number of pairs of segments with common vertex colored differently. Call such pair of segments a jackdaw. If the number of red points lying on each side from the yellow plane is odd, then the numbers of black and white segments having each red point as a vertex have different parities, therefore the number of jackdaws is even. If the number of red points on the each side of yellow plane is even, consider a graph having red points as vertices and black segments as edges. The number of its vertices with odd degree is even, therefore the common number of jackdaws is also even.
8. (L.Shatunov) A triangle $A B C$ is given. Let $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ be circles centered at points X, Y, Z, T respectively such that each of lines $B C, C A, A B$ cuts off on them four equal chords. Prove that the centroid of $A B C$ divides the segment joining X and the radical center of $\omega_{2}, \omega_{3}, \omega_{4}$ in the ratio $2: 1$ from X.
Solution. Prove that the circumcircle Ω of triangle $A B C$ is the nine-pointscircle of triangle $Y Z T$. In fact, let M be the midpoint of $Y Z, M_{a}, M_{b}, M_{c}$ be
the projections of M to $B C, C A, A B$ respectively, Y_{a}, Z_{a} be the projections of Y, Z to $B C$. Then M_{a} is the midpoint of $Y_{a} Z_{a}$ and since $B C$ cuts off equal chords on ω_{2}, ω_{3}, we obtain that the degrees of M_{a} with respect to these circles are equal. Similarly the degrees of M_{b}, M_{c} with respect to these circles are equal. Therefore the projections of M to the sideline of $A B C$ are collinear (on the radical axis), i.e. M lies on Ω. Similarly the midpoints of segments $Y T, Z T, X Y, X Z, X T$ lies on Ω. Thus the quadruple X, Y, Z, T is orthocentric, and Ω is the nine-points-circle of triangles $X Y Z, Y Z T$, XZT, XYT.
Now let O be the center of Ω, H be the orthocenter of $A B C, H^{\prime}$ be the center of circle $Y Z T, X^{\prime}$ be the radical center of $\omega_{2}, \omega_{3}, \omega_{4}$, and H_{t}, R_{t} be the projections of H and X^{\prime} respectively to $Y Z$. Then $H H_{t}$ is parallel to the Simson line $X^{\prime} R_{t}$ of M and passes through the orthocenter of $A B C$. Hence $H H_{t}$ is the Steiner line of M, and X^{\prime} is the midpoint of $H H^{\prime}$. Also O is the midpoint of $X H^{\prime}$ (because X is the orthocenter of $Y Z T$). Therefore the centroid G of $A B C$ is also the centroid of points H, X, H^{\prime}, i.e G lies on $X X^{\prime}$ and $G X=2 G X^{\prime}$.

Remark. We can consider as a partial case of $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ the incircle and three excircles of triangle. In this case the assertion of the problem is well known.

