XIX GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN
 The final round. First day. 8 form.
 Ratmino. 2023. July 30.

1. Let $A B C$ be an isosceles obtuse-angled triangle, and D be a point on its base $A B$ such that $A D$ equals to the circumradius of triangle $B C D$. Find the value of $\angle A C D$.
2. The bisectors of angles A, B, and C of triangle $A B C$ meet for the second time its circumcircle at points A_{1}, B_{1}, C_{1} respectively. Let A_{2}, B_{2}, C_{2} be the midpoints of segments $A A_{1}, B B_{1}, C C_{1}$ respectively. Prove that the triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ are similar.
3. The altitudes of a parallelogram are greater than 1 . Does this yield that the unit square may be covered by this parallelogram?
4. Let $A B C$ be an acute-angled triangle, O be its circumcenter, $B M$ be a median, and $B H$ be an altitude. Circles $A O B$ and $B H C$ meet for the second time at point E, and circles $A H B$ and $B O C$ meet at point F. Prove that $M E=M F$.

XIX GEOMETRICAL OLYMPIAD IN HONOUR OF
 I.F.SHARYGIN

 The final round. Second day. 8 form.

 The final round. Second day. 8 form. Ratmino. 2023. July 31.

 Ratmino. 2023. July 31.}
5. The median $C M$ and the altitude $A H$ of an acute-angled triangle $A B C$ meet at point O. A point D lies outside the triangle in such a way that $A O C D$ is a parallelogram. Find the length of $B D$, if $M O=a, O C=b$.
6. For which n the plane may be paved by congruent figures bounded by n arcs of circles?
7. The bisector of angle A of triangle $A B C$ meet its circumcircle ω at point W. The circle s with diameter $A H$ (H is the orthocenter of $A B C$) meets ω for the second time at point P. Restore the triangle $A B C$ if the points A, P, W are given.
8. Two circles ω_{1} and ω_{2} meeting at point A and a line a are given. Let $B C$ be an arbitrary chord of ω_{2} parallel to a, and E, F be the second common points of $A B$ and $A C$ respectively with ω_{1}. Find the locus of common points of lines $B C$ and $E F$.

XIX GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The final round. First day. 9 form. Ratmino. 2023. July 30.

1. The ratio of the median $A M$ of a triangle $A B C$ to the side $B C$ equals $\sqrt{3}: 2$. The points on the sides of $A B C$ dividing these side into 3 equal parts are marked. Prove that some 4 of these 6 points are concyclic.
2. Can a regular triangle be placed inside a regular hexagon in such a way that all vertices of the triangle were seen from each vertex of the hexagon? (Point A is seen from B, if the segment $A B$ dots not contain internal points of the triangle.)
3. Points $A_{1}, A_{2}, B_{1}, B_{2}$ lie on the circumcircle of a triangle $A B C$ in such a way that $A_{1} B_{1}\left\|A B, A_{1} A_{2}\right\| B C, B_{1} B_{2} \| A C$. The line $A A_{2}$ and $C A_{1}$ meet at point A^{\prime}, and the lines $B B_{2}$ and $C B_{1}$ meet at point B^{\prime}. Prove that all lines $A^{\prime} B^{\prime}$ concur.
4. The incircle ω of a triangle $A B C$ centered at I touches $B C$ at point D. Let P be the projection of the orthocenter of $A B C$ to the median from A. Prove that the circle $A I P$ and ω cut off equal chords on $A D$.

XIX GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN

 The final round. Second day. 9 form.

 The final round. Second day. 9 form. Ratmino. 2023. July 31.

 Ratmino. 2023. July 31.}
5. A point D lie on the lateral side $B C$ of an isosceles triangle $A B C$. The ray $A D$ meets the line passing through B and parallel to the base $A C$ at point E. Prove that the tangent to the circumcicle of triangle $A B D$ at B bisects EC.
6. Let $A B C$ be acute-angled triangle with circumcircle Ω. Points H and M are the orthocenter and the midpoint of $B C$ respectively. The line $H M$ meets the circumcircle ω of triangle $B H C$ at point $N \neq H$. Point P lies on the arc $B C$ of ω not containing H in such a way that $\angle H M P=90^{\circ}$. The segment $P M$ meets Ω at point Q. Points B^{\prime} and C^{\prime} are the reflections of A about B and C respectively. Prove that the circumcircles of triangles $A B^{\prime} C^{\prime}$ and $P Q N$ are tangent.
7. Let H be the orthocenter of triangle \mathbf{T}. The sidelines of triangle T_{1} pass through the midpoints of T and are perpendicular to the corresponding bisectors of T . The vertices of triangle T_{2} bisect the bisectors of T . Prove that the lines joining H with the vertices of T_{1} are perpendicular to the sidelines of T_{2}.
8. Let $A B C$ be a triangle with $\angle A=120^{\circ}, I$ be the incenter, and M be the midpoint of $B C$. The line passing through M and parallel to $A I$ meets the circle with diameter $B C$ at points E and $F(A$ and E lie on the same semiplane with respect to $B C$). The line passing through E and perpendicular to $F I$ meets $A B$ and $A C$ at points P and Q respectively. Find the value of $\angle P I Q$.

XIX GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The final round. First day. 10 form. Ratmino. 2023. July 30.

1. Let M be the midpoint of cathetus $A B$ of triangle $A B C$ with right angle A. Point D lies on the median $A N$ of triangle $A M C$ in such a way that the angles $A C D$ and $B C M$ are equal. Prove that the angle $D B C$ is also equal to these angles.
2. The Euler line of a scalene triangle touches its incircle. Prove that this triangle is obtuse-angled.
3. Let ω be the circumcircle of triangle $A B C, O$ be its center, A^{\prime} be the point of ω opposite to A, and D be a point on a minor arc $B C$ of ω. A point D^{\prime} is the reflection of D about $B C$. The line $A^{\prime} D^{\prime}$ meets ω for the second time at point E. The perpendicular bisector to $D^{\prime} E$ meets $A B$ and $A C$ at points F and G respectively. Prove that $\angle F O G=180^{\circ}-2 \angle B A C$.
4. Let $A B C$ be a Poncelet triangle, A_{1} is the reflection of A about the incenter I, A_{2} is isogonally conjugated to A_{1} with respect to $A B C$. Find the locus of points A_{2}.

XIX GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN
 The final round. Second day. 10 form. Ratmino. 2023. July 31.

5. The incircle of a triangle $A B C$ touches $B C$ at point D. Let M be the midpoint of arc $B A C$ of the circumcircle, and P, Q be the projections of M to the external bisectors of angles B and C respectively. Prove that the line $P Q$ bisects $A D$.
6. Let E be the projection of the vertex C of a rectangle $A B C D$ to the diagonal $B D$. Prove that the common external tangents to the circles $A E B$ and $A E D$ meet on the circle $A E C$.
7. There are 43 points in the space: 3 yellow and 40 red. Any four of them are not coplanar. May the number of triangles with red vertices hooked with the triangle with yellow vertices be equal to 2023? Yellow triangle is hooked with the red one if the boundary of the red triangle meet the part of the plane bounded by the yellow triangle at the unique point. The triangles obtained by the transpositions of vertices are identical.
8. A triangle $A B C$ is given. Let $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ be circles centered at points X, Y, Z, T respectively such that each of lines $B C, C A, A B$ cuts off on them four equal chords. Prove that the centroid of $A B C$ divides the segment joining X and the radical center of $\omega_{2}, \omega_{3}, \omega_{4}$ in the ratio $2: 1$ from X.
