
XVIII GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

The correspondence round. Solutions

1. (N.Moskvitin, 8) Let O and H be the circumcenter and the orthocenter respectively of
triangle ABC. It is known that BH is the bisector of angle ABO. The line passing through
O and parallel to AB meets AC at K. Prove that AH = AK.

Solution. Let D be the reflection of H about AC. Since D lies on the circumcircle of
ABC, we have ∠ODB = ∠OBD = ∠HBA. Thus OD ∥ AB, i.e. K lies on OD and
∠HKA = ∠OKC = ∠BAC (fig. 1). On the other hand, ∠CBO = ∠HBA = 90◦ − ∠A,
hence ∠ABC = 3(90◦−∠BAC), ∠ACB = 2∠BAC−90◦, and ∠HAK = 180◦−2∠BAC.
Therefore ∠AHK = ∠BAC = ∠AKH и AK = AH.
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Fig. 1.

2. (A.Salimova, 8) Let ABCD be a curcumscribed quadrilateral with incenter I, and let
O1, O2 be the circumcenters of triangles AID and CID. Prove that the circumcenter of
triangle O1IO2 lies on the bisector of angle ABC.

Solution. Note that O1O2 is the perpendicular bisector to DI, ∠IO1O2 = ∠IAD,
∠IO2O1 = ∠ICD. Hence we obtain for the center O of circle IO1O2: ∠OIO1 = 90◦ −
∠ICD. On the otyer hand, ∠O1IA = 90◦ −∠IDA и ∠BIO1 = 180◦ −∠IAB−∠IBA+
90◦ − ∠IDA = 90◦ + ∠ICD. Therefore B, I, O lie on the bisector of angle B (fig. 2).
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3. (N.Moskvitin, 8) Let CD be an altitude of right-angled triangle ABC with ∠C = 90◦.
Regular triangles AED and CFD are such that E lies on the same side from AB as C,
and F lies on the same side from CD as B. The line EF meets AC at L. Prove that
FL = CL+ LD.

Solution. By the assumption we obtain that FD = CD, DE = AD, and ∠FDE =
∠CDA. Thus triangles FDE and CDA are congruent and ∠FLC = 60◦. Take on the
ray LC segment LK = LF . Since LFK is a regular triangle, we obtain that FK = FL
and ∠KFL = ∠CFD = 60◦. Therefore ∠KFC = ∠DFL, i.e. triangles KFC and LFD
are congruent (fig. 3). Hence KC = LD which is equivalent to the required assertion.
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Remark. The assertion is correct for an arbitrary triangle ABC and an arbitrary point
D on side AB.

4. (D.Shvetsov, 8) Let AA1, BB1, CC1 be the altitudes of acute angled triangle ABC; A2 be
the touching point of the incircle of triangle AB1C1 with B1C1; points B2, C2 be defined
similarly. Prove that the lines A1A2, B1B2, C1C2 concur.

Solution. Since triangles AB1C1 and ABC are similar we have B1A2 : A2C1 = (p− b) :
(p− c), where a, b, c, p are the sidelengths and the semiperimeter of ABC. Similarly we
obtain that C1B2 : B2A1 = (p− c) : (p− a) and A1C2 : C2B1 = (p− a) : (p− b). By the
Ceva theorem we obtain the required assertion.

5. (D.Shvetsov, 8) Let the diagonals of cyclic quadrilateral ABCD meet at point P . The
line passing through P and perpendicular to PD meets AD at point D1; a point A1 is
defined similarly. Prove that the tangent at P to the circumcircle of triangle D1PA1 is
parallel to BC.

Solution. Let MN be the tangent. Then ∠NPD = 90◦ − ∠MPD1 = 90◦ − ∠PA1A =
∠PAD = ∠PBC (fig.5), which yields the required assertion.

A

B

C

D

M

N

P

A1D1

Fig. 5.

6. (F.Ivlev, 8–9) The incircle and the excircle of triangle ABC touch the side AC at points
P and Q respectively. The lines BP and BQ meet the circumcircle of triangle ABC for
the second time at points P ′ and Q′ respectively. Prove that PP ′ > QQ′.
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Solution. Since CP = AQ we have BP · PP ′ = AP · PC = BQ · QQ′. But since
|AP −CP | = |AB−CB| < |(AB2−CB2)/AC| point P lies between the midpoint of AC
and the foot of the corresponding altitude (fig. 6). Therefore BP < BQ and PP ′ > QQ′.
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Fig. 6.

7. (G.Filipovsky, 8–9) A square with center F was constructed on the side AC of triangle
ABC outside it. After this, everything was erased except F and the midpoints N , K of
sides BC, AB. Restore the triangle.

Solution. Let M be the midpoint of AC. The FM = AC/2 = KN and FM ⊥ KN .
Thus we can construct point M and restore the triangle ABC by the midpoints of its
sides.

8. (I.Frolov, 8–9) Points P , Q, R lie on the sides AB, BC, CA of triangle ABC in such a
way that AP = PR, CQ = QR. Let H be the orthocenter of triangle PQR, and O be
the circumcenter of triangle ABC. Prove that OH ∥ AC.

Solution. Since ∠ARP = ∠BAC, ∠CRQ = ∠BCA, we obtain that ∠PRQ = ∠ABC
and ∠PHQ = 180◦−∠ABC, i.e. points B, P , Q, H are concyclic. Also the projections of
P , Q to AC bisect segments AR, CR respectively, hence the distance between them equals
to a half of AC. Let M , N be the midpoints of AB, BC respectively. Since the projections
of PM and QN to AC are equal we have PM : QN = cos∠ACB : cos∠BAC =
OM : ON . Therefore the trianglesOPM and OQN are similar, i.e. ∠POQ = ∠MON =
∠PHQ. Thus O also lie on the circle BPHQ (fig. 8) and ∠BOH = ∠BQH = 90◦ +
∠BCA− ∠BAC which is equivalent to the required assertion.
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9. (F.Ivlev, 8–9) The sides AB, BC, CD and DA of quadrilateral ABCD touch a circle
with center I at points K, L, M and N respectively. Let P be an arbitrary point of line
AI. Let PK meet BI at point Q, QL meet CI at point R, and RM meet DI at point
S. Prove that P , N and S are collinear.

Solution. By the Menelaos theorem (BQ : QI)(IP : PA)(AK : KB) = 1. Similarly
(CR : RI)(IQ : QB)(BL : LC) = 1 and (DS : SI)(IR : RC)(CM : MD) = 1.
Multiplying these equalities we obtain from AK = AN , BK = BL, CL = CM , DM =
DN that (IS : SD)(DN : NA)(AP : PI) = 1 which is equivalent to the required
assertion.

Remark. The assertion is correct if we replace I by an arbitrary point of the plane.

10. (M.Fadin, 8–9) Let ω1 be the circumcircle of triangle ABC and O be its circumcenter. A
circle ω2 touches the sides AB, AC, and touches the arc B̂C of ω1 at point K. Let I be
the incenter of ABC. Prove that the line OI contains the symmedian of triangle AIK.

Solution. Let M , N be the midpoints of arcs BC and ABC of the circumcircle of ABC.
It is known that the touching point K of the circumcircle and the cemiincircle lies on NI.
Also I lies on AM (fig. 10). Thus triangles IMN and IKA are similar, and the median
OI of triangle IMN coincide with the symmedian of triangle IKA.
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11. (D.Prokopenko, 8–10) Let ABC be a triangle with ∠A = 60◦, and T be a point such that
∠ATB = ∠BTC = ∠ATC. A circle passing through B, C and T meets AB and AC for
the second time at points K and L. Prove that the distances from K and L to AT are
equal.

Solution. Note that AT passes through the vertex of a regular triangle with base BC.
Since ∠A = 60◦ this vertex is a common point of tangents to the circumcircle of ABC
at B and C, i.e. AT is a symmedian of the triangle. On the other hand it is clear that
triangles ABL and ACK are regular, i.e. the triangles ABC and ALK are symmetric
with respect to the bisector of angle A and AT is a median of triangle AKL (fig. 11).
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12. (L.Emelyanov 8–11) Let K, L, M , N be the midpoints of sides BC, CD, DA, AB
respectively of a convex quadrilateral ABCD. The common points of segments AK, BL,
CM , DN divide each of them into three parts. It is known that the ratio of the length
of the medial part to the length of the whole segment is the same for all segments. Does
this yield that ABCD is a parallelogram?

Answer. No.

Solution. Let PQRS be a trapezoid with the ratio of bases PS and QR less than 2.
Take on the extensions of PQ beyond P and Q such points A and K respectively that
PA = PQ = 2QK. Take on the extensions of RS beyond R and S such points M and C
respectively that CR = RS = 2SM . Let CK and QR meet at point B, AM and PS meet
at point D. Then it easy to see that AM = MD, BK = KC, the midpoints N , L of AB,
CD lie on PS, QR respectively, and QR : BL = PS : DN = PQ : AK = RS : CM = 2/5
(fig. 12).
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Remark. It may be proved that all quadrilaterals satisfying to the conditions can be
constructed by the indicated way and thus the length of the medial part is 2/5 of the
length of whole segment.

13. (M.Saghafian, 8–11) Eight points in a general position are given in the plane. The areas of
all 56 triangles with vertices at these points are written in a row. Prove that it is possible
to insert the symbols "+" and "−" between them in such a way that the obtained sum
is equal to zero.

Solution. Note that the required assertion is correct for any four points. In fact, if these
points are vertices of a convex quadrilateral ABCD then SABC+SACD−SBCD−SABD = 0.
And if point D lies inside triangle ABC then SABC − SABD − SACD − SBCD = 0.

Now take a correspondence between the given points and vertices of cube ABCDA′B′C ′D′

and consider the following 14 quadruples of the vertices: six faces of the cube, six sections
passing through the pairs of opposite edges, and two tetrahedrons AB′CD′, A′BC ′D.
Any two of these quadruples have at most two common points, thus each of 56 triangles
is included exactly in one quadruple. Hence choosing the corresponding symbols for each
quadruple we obtain the required result.

14. (L.Emelyanov) A triangle ABC is given. Let C ′ and C ′
a be the touching points of sideline

AB with the incircle and with the excircle touching the side BC. Points C ′
b, C ′

c, A′, A′
a, A′

b,
A′

c, B′, B′
a, B′

b, B′
c are defined similarly. Consider the lengths of 12 altitudes of triangles

A′B′C ′, A′
aB

′
aC

′
a, A′

bB
′
bC

′
b, A′

cB
′
cC

′
c.

(a) (8–9) Find the maximal number of different lengths.

(b) (10–11) Find all possible numbers of different lengths.

Answer. (a) 6. (b) From 2 to 6.

Solution. (a) Note that the lines A′B′ and A′
cB

′
c are perpendicular to the bisector of

angle C. Also BA′ = AB′
c = p − b, and AB′ = BA′

c = p − a, where a, b, c, p are the
sidelengths and the semiperimeter of ABC. Hence the distances from A to A′B′ and from
B to A′

cB
′
c are equal. Similarly the distances from B to A′B′ and from A to A′

cB
′
c are

8



equal. Since AC ′ = BC ′
c, we obtain that the altitudes of triangles A′B′C ′, A′

cB
′
cC

′
c from

C ′, C ′
c respectively are also equal (fig. 14). Similarly we have the equalities of five other

pairs of altitudes, i.e. between 12 altitudes there are six pairs of equal segments.
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Fig. 14.

(b) The angles of triangle A′B′C ′ are equal (π − A)/2, (π − B)/2, (π − C)/2, and the
angles of triangle A′

cB
′
cC

′
c are equal A/2, B/2, (π+C)/2. By the sinus law the altitudes of

these triangle are equal 2r cos(A/2) cos(B/2), 2r cos(A/2) cos(c/2), 2r cos(B/2) cos(C/2),
and 2rc sin(A/2) sin(B/2), 2rc sin(A/2) cos(C/2), 2rc sin(B/2) cos(C/2), where r, rc are
the inradius and the exradius. Similarly we obtain the formulas for the altitudes of two
remaining triangles. From (a) we have r : rc = tg(A/2) tg(B/2). Hence if B = π/2 we
obtain that 2r cos(A/2) = 2rc sin(A/2), i.e. we have four equal altitudes. So we have five
different lengths for a nonisosceles right angled triangle, four lengths for an isosceles not
right angled triangle, three lengths for an isosceles right angled triangle, and two lengths
for a regular triangle.

15. (I.Mikhaylov, 9–11) A line ℓ parallel to the side BC of triangle ABC touches its incircle
and meets its circumcircle at points D and E. Let I be the incenter of ABC. Prove that
AI2 = AD · AE.

Solution. Since DE ∥ BC we have ⌣ BD =⌣ CE, i.e. ∠BAD = ∠CAE and ∠DAI =
∠EAI. Now note that the tangents from D and E to the incircle meet at a point F lying
on the circumcircle hence DI and EI bisect angles FDE and FED respectively.

Let A′, D′, E ′ be the second common points of AI, DI, EI respectively with the
circumcircle. Since these points are the midpoints of arcs DFE, EF , DE respectively
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we obtain that ⌣ D′A′ =⌣ DE ′ (fig.15). Therefore ∠AID = ∠AEI, i.e. the triangles
AID and AEI are similar and AI : AD = AE : AI.
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16. (M.Plotnikov, D.Khilko, P.Kozhevnikov, 9–11) Let ABCD be a cyclic quadrilateral, E =
AC ∩ BD, F = AD ∩ BC. The bisectors of angles AFB and AEB meet CD at points
X,Y . Prove that A,B,X, Y are concyclic.

Solution. Let U be the common point of AB and CD (fig. 16). Then DY : Y C = DE :
EC = AD : BC = UD : UB (the second equality follows from the similarity of triangles
EAD and EBC, the third one follows from the similarity of triangles UDA and UBC).
Therefore UY = UD+UD ·CD/(UD+UB) = UD(UC+UB)/(UD+UB). Similarly we
obtain that UX = UC(UD + UB)/(UC + UB). Thus UX · UY = UC · UD = UA · UB.
The reasoning is similar for another configurations.
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17. (I.Kukharchuk, 9–11) Let a point P lie inside a triangle ABC. The rays starting at P
and crossing the sides BC, AC, AB under the right angle meet the circumcircle of ABC
at A1, B1, C1 respectively. It is known that lines AA1, BB1, and CC1 concur at point Q.
Prove that all such lines PQ concur.

Solution. Consider a point R isogonally conjugated to Q. Let AR, BR, CR meet the
circumcircle for the second time at points A2, B2, C2 respectively. Let also A1P , B1P , C1P
meet the circumcircle at points A3, B3, C3. Finally let O be the circumcenter of ABC.
The line QR passes through the common point X of B1A2 and A1B2 (Pascal theorem
for BB2A1AA2B1). Similarly it passes through the common point Y of B1C2 and C1B2.
Therefore the lines XY and QR coincide.

The line PO passes through X (Pascal theorem for B3B1A2A3A1B2 and A3A2 is a
diameter because A1 and A2 are symmetric with respect to the perpendicular bisector to
BC), similarly passes through Y . Hence PO coincide with XY and with QR. Therefore
all lines PQ pass through O.

18. (A.Zaslavsky, 10–11) The products of the opposite sidelengths of a cyclic quadrilateral
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ABCD are equal. Let B′ be the reflection of B about AC. Prove that the circle passing
through A, B′, D touches AC.

Solution. Construct two circles passing through B′ and touching AC at points A and C
respectively. Let D′ be the second common point of these circles. Since ∠CAD′+∠ACD′ =
∠AB′D′+∠CB′D′ = ∠B, we obtain that D′ lies on the circumcircle of the quadrilateral.
Also the midpoint of AC lies on B′D′ because the tangents from it to the circles are
equal (fig. 18). Hence AD′/CD′ = sin∠ACD′/ sin∠CAD′ = sin∠CB′D′ sin∠AB′D′ =
AB′/CB′ = AC/BC, i.e. D′ coincides with с D.
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Fig. 18.

19. (M.Didin, 10–11) Let I be the incenter of triangle ABC, and K be the common point of
BC with the external bisector of angle A. The line KI meets the external bisectors of
angles B and C at points X and Y . Prove that ∠BAX = ∠CAY .

Solution. Let Ia, Ib, Ic be the excenters of ABC. The I is the orthocenter of triangle
IaIbIc and IaA is its altitude. Points A, K, Ib, Ic form a harmonic quadruple, thus the
quadruple of points I, K, Y , X and the quadruple of lines AI, AK, AY , AX are also
harmonic. Since AI ⊥ AK, we obtain that AI is the bisector of angle XAY .
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20. (I.Kukharchuk, 10–11) Let O, I be the circumcenter and the incenter of triangle ABC;
R, r be the circumradius and the inradius; D be the touching point of the incircle with
BC; and N be an arbitrary point of segment ID. The perpendicular to ID at N meets
the circumcircle of ABC at points X and Y . Let O1 be the circumcircle of triangle XIY .
Find the product OO1 · IN .
Answer. Rr.
First solution. Let K be the midpoint of XY . Then O1X

2 −OX2 = O1K
2 −OK2. On

the other hand O1X
2 = O1I

2 = OO2
1 + OI2 − 2OO1 · OI cos∠O1OI (fig. 20). Therefore

2Rr = R2 −OI2 = 2OO1(OK −OI cos∠O1OI) = 2OO1 · IN . The solution is similar for
another configurations.
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Seconf solution. There is a general fact: let P be an arbitrary point inside ABC; R and
S be such points on segments BP and CP respectively that RS ∥ BC; Q and L be the
common points of the circumcircle of ABC with RS; Obe the circumcenter of ABC; O1 be
the circumcenter of BPC; O2 be the circumcenter of QPL. Then OO1 : OO2 = RS : BC.

Prove it. Let BP the circles QPL, ABC at points F , G respectively. Project O, O1, and
O2 to BP and take a homothety with center P and coefficient 2. The image of O1 is
B, the image of O2 is F , and the image of O is such point X on BG that XG = BP .
We have to prove that GB : BX = BR : RP . This is equivalent (since BX = GP ) to
GR/RX = BR/RP , which is correct because the degrees of R with respect to circles
ABC and QPL are equal.

21. (A.Zaslavsky, 10–11) The circumcenter O, the incenter I, and the midpoint M of a
diagonal of a bicentral quadrilateral were marked. After this the quadrilateral was erased.
Restore it.

Solution. Diagonals of the quadrilateral meet at point L lying on OI. Also OM ⊥ ML
which allows to construct the point L. Now let AB be the diameter of the circumcicle
passing through I, and C be such point of the circumcircle that CL ⊥ AB. Then CO,
CI, CL are the median the bisector and the altitude of a right angled triangle ABC.
Therefore CI is the bisector of angle OCL. This allows to construct C as a common
point of the perpendicular from L to OI and the Appolonius circle for points O and L,
thus we can construct the circumcircle. Finally note that the midpoint N of the second
diagonal is the common point of the line MI and the circle with diameter OL, This allows
to construct the vertices of the quadrilateral.

22. (P.Kozhevnikov, 10–11) Chords A1A2, A3A4, A5A6 of a circle Ω concur at point O. Let
Bi be the second common point of Ω and the circle with diameter OAi. Prove that chords
B1B2, B3B4, B5B6 concur.

Solution. Consider a composition of the inversion centered at O with radius
√
OA1 ·OA2

and the reflection with about O. It transposes A1, A2, conserves Ω and maps the circle
with diameter OA1 to a line perpendicular to A1A2. Therefore it maps B1, B2 to the
points C1, C2 opposite to A2, A1, and so it maps the line B1B2 to the circle C1C2O. Let
this circle meet for the second hand A2A1 and A2C1 at points X, Y respectively (fig. 22).
Then A2X = OA1, i.e. the degree of A2 with respect to the circle does not depend on the
choice of the chord. Hence the degree of the center O1 of Ω also does not depend on the
chord and all circles meet OO1 at the same point.
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23. (A.Sgibnev, 10–11) An ellipse with focus F is given. Two perpendicular lines passing
through F meet the ellipse at four points. The tangents to ellipse at these points form a
quadrilateral circumscribed around the ellipse. Prove that this quadrilateral is inscribed
into a conic with focus F .

Solution. Prove general assertion: let two perpendicular rays with origin F meet ellipse
at points A, B. Then the locus of common points of tangents to the ellipse at A and B
is a conic with focus F .

First way. A polar transformation centered at F maps the ellipse to a circle, also it maps
A, B to two perpendicular tangents to this circle. The chords joining the touching points
touche several circle hence their images lie on the conic with focus F . Note that this
reasoning is also correct for an arbitrary constant angle AFB. The ratio of excentricities
of the original ellipse and the obtained conic equals cos(∠AFB/2).

Second way. Use the following fact: let AB be a chord of the ellipse passing through its
focus F and C be the common point of tangents at A, B. Then CF ⊥ AB.

Consider a projective transformation mapping the ellipse to a circle and mapping F to its
center. It maps AB and C to a diameter of the circle and the infinite point perpedicular
to it, also it maps CF to a perpendicular diameter. The common points of tangents at
the endpoints of these diameters lie on a concentric circle. The inverse transformation
maps this circle its center, and the infinite line to a conic, its center, and its directrix
respectively.

24. (O.Smirnov, 11) Let OABCDEF be a hexagonal pyramid with base ABCDEF circumscribed
around a sphere ω. The plane passing through the touching points of ω with faces OFA,
OAB and ABCDEF meets OA at point A1; points B1, C1, D1, E1 and F1 are defined
similarly. Let ℓ, m и n be the lines A1D1, B1E1 and C1F1 respectively. It is known that
ℓ and m are coplanar, also m and n are coplanar. Prove that ℓ and n are coplanar.
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Solution. A cone with vertex O circumscribed around the sphere meets the base of the
pyramid by an ellipse inscribed into ABCDEF . By the Brianchon theorem the lines AD,
BE, and CF concur at some point L. Then the common point of A1D1 and B1E1 lies on
OL. Similarly the common point of B1E1 and C1F1 lies on this line. Therefore ℓ, m, n,
and OL concur.
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