XVII Олимпиада по геометрии им. И.Ф.Шарыгина Финал. Первый день. 8 класс

Поведники, 31 июля 2021 г.

- 1. (Б.Френкин) В выпуклом четырехугольнике ABCD центры описанной и вписанной окружностей треугольника ABC совпадают соответственно с центрами вписанной и описанной окружностей треугольника ADC. Известно, что AB=1. Найдите длины остальных сторон и углы четырехугольника.
- 2. (П.Кожевников) Через вершины треугольника ABC проведены параллельные прямые l_a , l_b , l_c . Пусть прямая a симметрична высоте AH_a относительно l_a . Аналогично определяем b, c. Докажите, что a, b, c пересекаются в одной точке.
- 3. (А.Заславский) Участники тараканьих бегов бегут по окружности в одном направлении, стартовав одновременно из точки S. Таракан A бежит вдвое медленнее, чем B, и втрое медленнее, чем C. Точки X, Y на отрезке SC таковы, что SX = XY = YC. Прямые AX и BY пересекаются в точке Z. Найдите Γ МТ пересечения медиан треугольника ZAB.
- 4. (И.Кухарчук) В остроугольном треугольнике ABC высоты AH и CH пересекают стороны BC и AB в точках A_1 и C_1 . Точки A_2 и C_2 симметричны относительно AC точкам A_1 и C_1 . Докажите, что расстояние между центрами описанных окружностей треугольников C_2HA_1 и C_1HA_2 равно AC.

XVII Олимпиада по геометрии им. И.Ф.Шарыгина Финал. Второй день. 8 класс

Поведники, 1 августа 2021 г.

- 5. (M.Saghafian) Пусть A_1 , A_2 , A_3 , A_4 и B_1 , B_2 , B_3 , B_4 две четверки точек, не лежащих на одной окружности. Известно, что для любых i, j, k радиусы описанных окружностей треугольников $A_iA_jA_k$ и $B_iB_jB_k$ равны. Обязательно ли $A_iA_j = B_iB_j$ для любых i, j?
- 6. (М.Дидин) Дан остроугольный треугольник ABC. Точка P выбрана так, что AP = AB и $PB \parallel AC$. Точка Q выбрана так, что AQ = AC и $CQ \parallel AB$. Отрезки CP и BQ пересекаются в точке X. Докажите, что центр описанной окружности треугольника ABC лежит на окружности (PXQ).
- 7. (И.Кухарчук) В выпуклом пятиугольнике ABCDE равны углы CAB, BCA, ECD, DEC и AEC. Докажите, что середина BD лежит на CE.
- 8. (С.Берлов) Существует ли выпуклый многоугольник, у которого длины всех сторон равны, а любые три вершины образуют тупоугольный треугольник?

XVII Олимпиада по геометрии им. И.Ф.Шарыгина Финал. Первый день. 9 класс

Поведники, 31 июля 2021 г.

- 1. (Ф.Ивлев, А.Марданов) Через точку внутри треугольника провели три чевианы. Оказалось, что длины шести отрезков, на которые они разбивают стороны треугольника, образуют в каком-то порядке геометрическую прогрессию. Докажите, что длины чевиан тоже образуют геометрическую прогрессию.
- 2. (М.Волчкевич) Дан вписанный в окружность пятиугольник. Докажите, что отношение его площади к сумме диагоналей не превосходит четверти радиуса окружности.
- 3. (М.Дидин, И.Фролов) Внутри остроугольного неравнобедренного треугольника ABC отмечена точка T, такая что $\angle ATB = \angle BTC = 120^\circ$. Окружность с центром E проходит через середины сторон треугольника ABC. Оказалось, что точки B,T,E лежат на одной прямой. Найдите угол ABC.
- 4. (M.Saghafian) Назовем расстоянием между треугольниками $A_1A_2A_3$ и $B_1B_2B_3$ наименьшее из расстояний A_iB_j . Можно ли так расположить на плоскости пять треугольников, чтобы расстояние между любыми двумя из них равнялось сумме радиусов их описанных окружностей?

XVII Олимпиада по геометрии им. И.Ф.Шарыгина Финал. Второй день. 9 класс

Поведники, 1 августа 2021 г.

- 5. (П.Кожевников) Пусть O центр описанной окружности треугольника ABC. На стороне BC нашлись точки X и Y такие, что AX = BX и AY = CY. Докажите, что окружность, описанная около треугольника AXY, проходит через центры описанных окружностей треугольников AOB и AOC.
- 6. (П.Рябов) Диагонали трапеции ABCD ($BC \parallel AD$) пересекаются в точке O. На отрезках BC и AD выбраны соответственно точки M и N. К окружности AMC проведена касательная из C до пересечения с лучом NB в точке P; к окружности BND из D проведена касательная до пересечения с лучом MA в точке R. Докажите, что $\angle BOP = \angle AOR$.
- 7. (М.Дидин, Ф.Ивлев, И.Фролов) На плоскости проведены три прямые, образующие остроугольный неравнобедренный треугольник. Федя, у которого есть циркуль и линейка, хочет провести все высоты этого треугольника. Ваня с ластиком пытается ему помешать. За ход Федя проводит либо прямую через две отмеченные точки, либо окружность с центром в отмеченной точке, проходящую через другую отмеченную точку. После этого Федя отмечает любое количество точек (точки пересечения проведенных линий, случайные точки на проведенных линиях и случайные точки плоскости). Ваня за ход стирает не более трех отмеченных точек. (Федя не может использовать стертые точки в своих построениях, пока не отметит их снова). Ходят по очереди, начинает Федя. Изначально никакие точки плоскости не отмечены. Может ли Федя провести высоты?
- 8. (A.Dadgarnia) Четырехугольник ABCD описан около окружности ω с центром I. Прямые AC и BD пересекаются в точке P, AB и CD в точке E, AD и BC в точке F. Точка K на описанной окружности треугольника EIF такова, что $\angle IKP = 90^\circ$. Луч PK пересекает ω в точке Q. Докажите, что описанная окружность треугольника EQF касается ω .

XVII Олимпиада по геометрии им. И.Ф.Шарыгина Финал. Первый день. 10–11 классы

Поведники, 31 июля 2021 г.

- 1. (Д.Швецов) В треугольнике ABC ($\angle C = 90^{\circ}$), CH высота; HA_1, HB_1 биссектрисы углов $\angle CHB, \angle AHC$ соответственно; E, F середины отрезков HB_1 и HA_1 соответственно. Докажите, что прямые AE и BF пересекаются на биссектрисе угла ACB.
- 2. (А.Заславский) В неравнобедренном треугольнике ABC точки A_0 , B_0 , C_0 середины сторон BC, CA, AB соответственно. Биссектриса угла C пересекает прямые A_0C_0 и B_0C_0 в точках B_1 и A_1 . Докажите, что прямые AB_1 , BA_1 и A_0B_0 пересекаются в одной точке.
- 3. (К.Кноп, Г.Челноков) Биссектриса угла A треугольника ABC (AB > AC) пересекает описанную окружность в точке P. Перпендикуляр к AC в точке C пересекает биссектрису угла A в точке K. Окружность с центром в точке P и радиусом PK пересекает меньшую дугу PA описанной окружности в точке D. Докажите, что в четырехугольник ABDC можно вписать окружность.
- 4. (Т.Корчемкина) Может ли треугольник быть разверткой четырехугольной пирамиды?

XVII Олимпиада по геометрии им. И.Ф.Шарыгина Финал. Второй день. 10–11 классы

Поведники, 1 августа 2021 г.

- 5. (П.Кожевников) Секущая пересекает первую окружность в точках A_1, B_1 , а вторую в точках A_2, B_2 . Вторая секущая пересекает первую окружность в точках C_1, D_1 , а вторую в точках C_2, D_2 . Докажите, что точки $A_1C_1 \cap B_2D_2, A_1C_1 \cap A_2C_2, A_2C_2 \cap B_1D_1, B_2D_2 \cap B_1D_1$ лежат на одной окружности, соосной с данными двумя.
- 6. (Д.Бродский) Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке S. Точки X, Y на биссектрисе угла S таковы, что $\angle AXC \angle AYC = \angle ASC$. Докажите, что $\angle BXD \angle BYD = \angle BSD$.
- 7. (М.Еtesamifard) В прямоугольном треугольнике $ABC\ I$ центр вписанной окружности, M середина гипотенузы AB. Касательная к описанной окружности треугольника ABC в точке C пересекает прямую, проходящую через I и параллельную AB, в точке P. Точка H ортоцентр треугольника PAB. Докажите, что точка пересечения прямых CH и PM лежит на вписанной окружности треугольника ABC.
- 8. (М.Дидин) На аттракционе "Весёлая парковка" у машинки только 2 положения руля: "вправо" и "совсем вправо". В зависимости от положения руля, машинка едет по дуге радиуса r_1 или r_2 . Машинка выехала из точки A на север и проехала расстояние l, повернув при этом на угол $\alpha < 2\pi$. Где она могла оказаться (найдите ГМТ концов возможных траекторий)?