
VI GEOMETRICAL OLYMPIAD IN HONOUR OF
I.F.SHARYGIN

Final round. First day. Grade 8. Solutions.

1. (M.Rozhkova, Ukraine) For a nonisosceles triangle ABC three lines are considered: the
altitude from vertex A and two bisectrices from remaining vertices. Prove that the circumcircle
of the triangle formed by these three lines touches the bisectrix from vertex A.

Solution. Let I be the incenter of the triangle, B′ be the foot of the bisectrix from vertex
B, and X be the common point of the bisectrix from C and the altitude from A Then
∠AIB′ = ∠A/2 + ∠C/2 = 90◦ − ∠B/2 = ∠IXA, and we obtain the required assertion.
The other dispositions of points can be considered similarly.
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2. (A.Akopyan) Two points A and B are given. Find the locus C of points such that triangle
ABC can be covered by a circle with radius 1.

Solution. Evidently the required locus is empty when AB > 2, and it is a circle with
diameter AB when AB = 2. Let AB < 2, and let P , Q be the common points of two
circles with centers A, B and radii equal to 1. Then the required locus is the union of
unit circles with centers in the circular «lens» formed by arcs PQ of these circles. Let P1,
P2, Q1, Q2 be points such that P is the midpoint of segments AP1, BP2, and Q is the
midpoint of segments AQ1, BQ2. Construct four arcs: P1Q1 with center A and radius 2,
P2Q2 with center B and radius 2, P1P2 with center P and radius 1, Q1Q2 with center Q
and radius 1 These arcs bound the required locus.
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3. (S.Berlov, D.Prokopenko) Let ABCD be a convex quadrilateral and K be the common
point of rays AB and DC. There exists a point P on the bisectrix of angle AKD such
that lines BP and CP bisect segments AC and BD respectively. Prove that AB = CD.

Solution. Since lines BP and CP contain the medians of triangles ABC and BCD, we
have SKAB = SKBC = SKCD. Since triangles KAB and KCD have the equal altitudes,
their bases are also equal.

4. (I.Bogdanov) Circles ω1 and ω2 inscribed into equal angles X1OY and Y OX2 touch lines
OX1 and OX2 in points A1 and A2 respectively. Also they touch OY in points B1 and
B2. Let C1 be the second common point of A1B2 and ω1; C2 be the second common point
of A2B1 and ω2. Prove that C1C2 is the common tangent of the two circles.

Solution. Triangle OA1B2 equals triangle OB1A2 by two sides and included angle. Thus
A1B2 = B1A2. Also from B2C1 ·B2A1 = B2B

2
1 = B1C2 ·B1A2 we obtain B2C1 = B1C2, and

since ∠A1OB1 = ∠B2OA2, we have ∠A1C1B1+∠A2C2B2 = 180◦. Therefore quadrilateral
B2C2B1C1 is cyclic and so it is an isosceles trapezoid. Then ∠B2C2C1 = ∠C2B2B1 and
C2C1 is the tangent
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5. (B.Frenkin) Let AH, BL and CM be the altitude, the bisectrix and the median in triangle
ABC. It is known that lines AH and BL are the altitude and the bisectrix of triangle
HLM . Prove that line CM is the median of this triangle.

Solution. Since AH ⊥ LM , we have LM ∥ BC, i.e. LM is the medial line of the
triangle. Therefore BL is the bisectrix and the median, i.e. AB = BC. Now from equality
of triangles BLM and BLH we obtain that BH = BM = AM = CH. Thus AB = AC,
and ABC is a regular triangle.

6. (D.Prokopenko) Let E, F be the midpoints of sides BC, CD of square ABCD. Lines AE
and BF meet in point P . Prove that ∠PDA = ∠AED.

First solution. Let the line passing through A and parallel to BF meet CD in point G.
Since ABFG is a parallelogram, we have FG=AB and so FD = DE. By Thales theorem
the line passing through D and parallel to BF is the median of triangle ADP . Evidently
AE ⊥ BF , therefore this line is also the altitude. Thus triangle ADP is isosceles as well
as triangle AED. Angle EAD is their common angle at base, therefore their angles at
apex are equal.
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Second solution. Let AB = 1. Since BP is the altitude of right-angled triangle with legs
1 and 1/2, we have AP : PE = 4 : 1. Then by Thales theorem the projection of segment
DP to CD is equal to 4/5. Similarly its projection to AD is equal to 3/5. Therefore by
Pythagorean theorem DP = 1 = AD and we can argue as in the previous solution.

7. (B.Frenkin) Each of two regular polygons P and Q was divided by a line into two parts.
One part of P and one part of Q were attached along the dividing line to form a regular
polygon not equal to P and Q. How many sides can it have?

Answer. 3 or 4.
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Solution. It is evident that the new polygon contains at least one vertex of each of the
given polygons. On the other hand it can’t have more than one vertex of each of these
polygons because it isn’t equal to them. Thus it has two vertices which are the vertices of
P or Q and one or two vertices on the dividing line, i.e. three or four vertices. Both cases
are possible: we can cut off two equal right-angled triangles from two regular triangles or
two equal isosceles right-angled triangles from two squares.

8. (A.Zaslavsky) Bisectrices AA1 and BB1 of triangle ABC meet in I. Segments A1I and
B1I are the bases of isosceles triangles with vertices A2 and B2 lying on line AB. It is
known that line CI bisects segment A2B2. Is it true that triangle ABC is isosceles?

Answer. No, the condition of the problem is true for any triangle with ∠C = 120◦.

Solution. Let CC1 be the bisectrix of angle C. Then CA1 is the external bisectrix of
angle ACC1, i.e. point A1 lies on equal distances from lines AC and CC1. Also this
point lies on equal distances from lines AC and AB, thus C1A1 is the bisectrix of angle
CC1B. Let J be the common point of lines C1A1 and BI. Since C1A1 and BI are the
bisectrices of triangle BCC1 with ∠C = 60◦, we have ∠IJA1 = 120◦. Then quadrilateral
CIJA1 is cyclic and IJ = JA1. Consider regular triangle IA1K. Since JK = JI and
∠C1JI = ∠C1JK = 60◦, K lies on C1B, i.e. coincides with point A2. Now we have
C1A2 = C1I. Similarly C1B2 = C1I.
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1. (B.Frenkin) For each vertex of triangle ABC the angle between the altitude and the
bisectrix from this vertex was found. It is known that these angles in vertices A and B
are equal and the angle in vertex C is greater than the two other angles. Find angle C of
the triangle.

Answer. 60◦.

Solution. The angle between the altitude and the bisectrix is equal to the half of the
absolute difference of angles adjacent to the opposite side of the triangle. Thus if these
angles in vertices A and B are equal then ∠A−∠C = ∠B−∠C or ∠A−∠C = ∠C−∠B.
In the first case the triangle is isosceles, i.e. the altitude and the bisectrix from C coincide
which contradicts the condition of the problem. In the second case ∠C = (∠A+∠B)/2 =
(180◦ − ∠C)/2 = 60◦.

2. (A.Akopyan) Two intersecting triangles are given. Prove that at least one of their vertices
lies inside the circumcircle of the other triangle.

Solution. If one of the circumcircles lies inside the other one then the assertion of the
problem is evidently true. If each circumcircle lies outside the other one then the triangles
can’t intersect. Let the circumcircles intersect in points P and Q, and suppose that the
assertion in question isn’t true. Then all vertices of each triangle lie on the arc PQ of
the respective circle lying outside the second circle. But these arcs lie in the distinct
semiplanes wrt line PQ. Thus the triangles also lie in the distinct semiplanes and can’t
intersect.

3. (V.Yasinsky, Ukraine) Points X, Y , Z lie on the line (in the indicated order). Triangles
XAB, Y BC, ZCD are regular, the vertices of the first and the third one are oriented
counterclockwise and the vertices of the second are oriented oppositely. Prove that AC,
BD and XY concur.

Solution. The rotation around B by 60◦ maps A and C to X and Y respectively. Thus
the angle between AC and XY is equal to 60◦. Let P be the common point of these lines.
Then since quadrilateral AXPB is cyclic we have ∠APB = 60◦ and quadrilateral PY CB
also is cyclic. Similarly we obtain that BD also passes through P
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4. (A.Zaslavsky) In triangle ABC, touching points A′, B′ of the incircle with BC, AC and
common point G of segments AA′ and BB′ were marked. After this the triangle was
erased. Restore it by ruler and compass.

Solution. Let C ′ be the touching point of the incircle with AB; A1, B1, C1 be the
projections of G to the sidelines of A′B′C ′. Then G as the Lemoine point of A′B′C ′

is the centroid of triangle A1B1C1. Therefore we have the following construction. Find
point C1 and its image C2 under the homothety with center G and coefficient −1/2. Now
construct the circles with diameters GA′, GB′ and find the common point of one of them
with the reflection of the remaining one in C2. This point lies on one side of A′B′C ′ and
the symmetric point on the other side. In general case the problem has two solutions.
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5. (D.Shvetsov) The incircle of right-angled triangle ABC (∠ABC = 90◦) touches AB, BC,
AC in points C1, A1, B1 respectively. One of the excircles touches the side BC in point
A2. Point A0 is the circumcenter of triangle A1A2B1; point C0 is defined similarly. Find
angle A0BC0.

Solution. Points A1 and A2 are symmetric wrt the midpoint of BC, thus A0B = A0C.
On the other hand A0 lies on the bisector of segment A1B1 coinciding with the bisectrix
of angle C. Therefore ∠CBA0 = ∠A0CB = ∠C/2. Similarly ABC0 = ∠A/2, thus
∠A0BC0 = 45◦.

6. (Y.Blinkov) An arbitrary line passing through vertex B of triangle ABC meets side AC
in point K and the circumcircle in point M . Find the locus of circumcenters of triangles
AMK.

Solution. Let O be the circumcenter of AMK. Since ∠AMK = ∠AMB = ∠C, we
have ∠AOK = 2∠C and ∠OAC = 90◦ − ∠C, i.e. this angle doesn’t depend on K, M .
Therefore all circumcenters are collinear. When K moves from A to C, they fill the lateral
side of an isosceles triangle with base AC and the angle at base equal to 90◦ − ∠C. (If
angle C is obtuse then the respective angle is equal to ∠C−90◦ and the locus in question
lies on the same side wrt AC as point B).
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7. (N.Beluhov, Bulgaria) Given triangle ABC. Let ALa and AMa be the internal and the
external bisectrix of angle A. Let ωa be the reflection of the circumcircle of △ALaMa in
the midpoint of BC. Circle ωb is defined similarly. Prove that ωa and ωb touch iff △ABC
is right-angled.

Solution. The circumcircle of triangle ALaMa is orthogonal to the circumcircle of triangle
ABC. Also it is the locus of points X for which BX : CX = AB : AC. Therefore ωa

also is orthogonal to the circumcircle of ABC and is the locus of points X for which
BX : CX = AC : AB. From similar reasoning for ωb we obtain that when these circles
touch, the touching point X lies on the circumcircle of ABC and AX : BX : CX = BC :
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CA : AB. By Ptolomeus theorem one of products AX ·BC, BX ·CA, CX ·AB is equal
to the sum of two remaining ones. These products are proportional to the squares of sides
of triangle ABC, thus it is right-angled. The converse assertion can be obtained similarly.

8. (V.Gurovits) Given is a regular polygon. Volodya wants to mark k points on its perimeter
in such a way that any other regular polygon (maybe having another number of sides)
doesn’t contain all marked points on its perimeter. Find the minimal k sufficient for any
given polygon.

Answer. k = 5.

Solution. Firstly let us prove that five points are sufficient. Let A, B, C, D be four
successive vertices of the given polygon (the case of a triangle is evident). Mark points
A, B, point X on AB, point Y on BC close to B and point Z on CD close to C. Then
line AB must contain the side of the polygon. The angle between this line and the side
passing through Y is equal to some angle from the finite set. It is clear that the respective
common point can’t lie on ray BA, and if it lies on the opposite ray then point Z is
outside the polygon. Thus we restore line BC. Line CD and so the polygon are restored
similarly.

Now let us prove that four points don’t suffice wnen the number of sides is big. Consider
firstly the case when three of marked points lie on the line ℓ. The regular triangle based on
the respective side lies inside the polygon, thus the remaining marked point lies outside
this triangle. Constructing two lines passing through this point and forming angles with ℓ
equal to 60◦ we obtain the regular triangle containing all marked points on its perimeter.

Now let marked points form a convex quadrilateral. Suppose that two of its opposite angles
are less than 60◦. On diagonal AB passing through two remaining vertices, construct an
arc equal to 240◦ and lying in the other semiplane than the center of the polygon. This arc
meets the circumcircle of the polygon in two points close to A и B. The sides containing
A and B form with AB the angles less than 120◦, thus respective part of the perimeter
lies inside the arc which contradicts our supposition. Therefore there exist two adjacent
angles of quadrilateral greater than 60◦. Constructing two lines which form angles equal
to 60◦ with the respective side of the quadrilateral and passing two remaining vertices we
obtain the regular triangle containing all marked points on its perimeter.
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1. (A.Zaslavsky) Let O, I be the circumcenter and the incenter of a right-angled triangle;
R, r be the radii of respective circles; J be the reflection of the vertex of the right angle
in I. Find OJ .

Answer. R− 2r.

Solution. Let ABC be the given triangle, ∠C = 90◦. Clearly the circle with center J and
radius 2r touches AC, BC. Let us prove that it also touches the circumcircle of ABC.

Consider the circle touching AC and BC in points P , Q and touching the circumcircle
internally in point T . Since T is the homothety center of this circle and the circumcircle,
lines TP , TQ secondly meet the circumcircle in midpoints B′, A′ of arcs AC, BC.
Therefore lines AA′ and BB′ meet in point I, and applying Pascal theorem to hexagon
CAA′TB′B we obtain that P , I, Q are collinear. The respective line is perpendicular to
the bisectrix of angle C, thus P , Q are the projections of J to AC and BC .
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2. (P.Kozhevnikov) Each of two equal circles ω1 and ω2 passes through the center of the other.
Triangle ABC is inscribed into ω1, and lines AC, BC touch ω2. Prove that cosA+cosB =
1.

Solution. Let O be the center of ω2, P be the point of ω1 opposite to O. Since CO is
the bisectrix of angle ACB, points A and B are symmetric wrt line OP . Transform the
sum of cosines to the product: cosA+cosB = 2 sin C

2
cos A−B

2
. From indicated symmetry

we obtain that |A − B|/2 = ∠COP , i.e. OP cos A−B
2

= CO, and since C/2 is the angle
between CO and the tangent, CO sin C

2
is equal to the radius of ω2, i.e. OP/2 .
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3. (A.Akopyan) All sides of a convex polygon were decreased in such a way that they formed
a new convex polygon. Is it possible that all diagonals were increased?

Answer. No, it isn’t.

Solution. Firstly let us prove the following lemma.

Let ABC, ABC ′ be two triangles such that AC > AC ′, BC > BC ′. Then for any point
K of segment AB we have CK > C ′K.

Indeed, points A, B, C ′ lie on the same side of the bisector of segment CC ′. Thus K also
lies on this side which is equivalent to the required inequality.

Let us prove now that the indicated situation is impossible for a quadrilateral. Indeed,
otherwise we can suppose that one of the diagonals wasn’t changed and the other one was
increased. Joining equal diagonals we obtain quadrilaterals ABCD, AB′CD′ with AB >
AB′, BC > B′C, CD > CD′, DA > D′A. Let E be the common point of diagonals of
ABCD. Then by lemma we have BE > B′E, DE > D′E and B′D′ ≤ B′E+D′E < BD,
a contradiction.

The impossibility for an arbitrary polygon can be proved by induction. As in the previous
case suppose that one diagonal wasn’t changed and all remaining ones weren’t decreased.
Considering the parts of the polygon cut by the restored diagonal we reduce the problem
to the polygon with smaller number of sides.

4. (F.Nilov) Projections of two points to the sidelines of a quadrilateral lie on two concentric
circles (projections of each point form a cyclic quadrilateral and the radii of circles are
different). Prove that this quadrilateral is a parallelogram.

Solution. Let the projections of point P to the sidelines lie on the circle with center O,
and P ′ be the reflection of P in O. Then the projection of P ′ lies on the same circle and
P , P ′ are the foci of some inconic. From the condition we obtain that the sidelines of the
quadrilateral are the common tangents to two concentric conics. Therefore they form a
parallelogram.
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5. (D.Shvetsov) Let BH be the altitude of right-angled triangle ABC (∠B = 90◦). The
incircle of triangle ABH touches AB,AH in points H1, B1; the incircle of triangle CBH
touches CB,CH in points H2, B2; point O is the circumcenter of triangle H1BH2. Prove
that OB2 = OB1.

Solution. Let I1, I2 be the incenters of triangles ABH, CBH. From similarity of these
triangles I1H1 : I2H2 = AB : BC. Since segments I1H1 and I2H2 are perpendicular to
AB and BC respectively, their projections to AC are equal. Since O is the midpoint of
H1H2, the projection of O to AC coincides with the midpoint of B1B2, and this yields
the assertion of the problem .
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6. (F.Nilov) The incircle of triangle ABC touches its sides in points A′, B′, C ′. It is known
that the orthocenters of triangles ABC and A′B′C ′ coincide. Is triangle ABC regular?

Answer. Yes, it is.

Solution. Let O, I be the circumcenter and the incenter of ABC; H ′ be the orhocenter
of A′B′C ′; A′′, B′′, C ′′ be the second common point of lines A′H ′, B′H ′, C ′H ′ with the
incircle. Then ∠A′′C ′′C ′ = ∠A′′A′C ′ = ∠B′′B′C ′ = ∠B′′C ′′C ′, i.e. A′′B′′ ∥ AB. Therefore
triangles ABC and A′′B′′C ′′ are homothetic. This homothety transforms O to I, and I
to H ′. Thus H ′ lies on OI. Then by condition the orthocenter H of triangle ABC lies on
OI and OI : IH = R : r
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Fig.10.6

Suppose that triangle ABC isn’t regular. Then two of its vertices, for example A, B, don’t
lie on OI. Since AI, BI are the bisectrices of angles OAH, OBH, we have OI : IH =
AO : OH = BO : BH. Therefore AH = BH = r which clearly isn’t possible. Thus ABC
is regular.

7. (B.Frenkin) Each of two regular polyhedrons P and Q was divided by a plane into two
parts. One part of P and one part of Q were attached along the dividing plane and formed
a regular polyhedron not equal to P and Q. How many faces can it have?

Answer. 4 or 8.

Solution. One of polyhedral angles of obtained polyhedron is equal to a polyhedral angle
of P , thus these polyhedrons have the same number of faces. Similarly Q has the same
number of faces. On the other hand, the new polyhedron can contain only one vertex
of each of polyhedrons P , Q, since otherwise it is equal to one of these polyhedrons.
Therefore each part of P , Q is a pyramid and the number of its lateral faces isn’t less
than the half of the number of faces of P and of Q. This inequality is correct only for the
tetrahedron and the octahedron. Both cases are possible if we cut out two equal pyramids
from P and Q by the planes parallel to their symmetry planes.

8. (N.Beluhov, Bulgaria) Triangle ABC is inscribed into circle k. Points A1, B1, C1 on its
sides were marked, and after that the triangle was erased. Prove that it can be restored
uniquely iff AA1, BB1 and CC1 concur.

Solution. Fix triangle ABC and points A1, B1. Let A2, B2 be the second common points
of AA1, BB1 with k; C ′ be an arbitrary point of arc A2CB2; A′, B′ be the second common
points of C ′A1, C ′B1 with k; C1 be the common point of AB and A′B′. If C ′ moves from
A2 to B2 then point C1 moves from A to B, thus there exist two triangles with the sides
passing through A1, B1, C1. The unique exclusion is the limiting position of C1 when C ′

tends to C.

Let us prove now that if AA1, BB1, CC1 concur then the triangle can be restored uniquely.
Consider the projective map restoring k and transforming the common point of these lines
to the centroid of ABC, such that A1, B1, C1 are transformed to the midpoints of its
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sides. Suppose that there exists another triangle A′B′C ′ with sides passing through A1,
B1, C1. Let for example quadrilateral AB1C1A

′ be convex. Then quadrilaterals BC1A1B
′

and CA1B1C
′ are also convex. Since point A′ lies outside the circumcircle of triangle

AB1C1, we have ∠B1C
′A1 < ∠B1AC1 and ∠BC1B

′ = ∠AC1A
′ > ∠AB1A

′. Similarly
∠CA1C

′ > ∠BC1B
′ and ∠AB1A

′ > ∠CA1C
′, a contradiction.
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