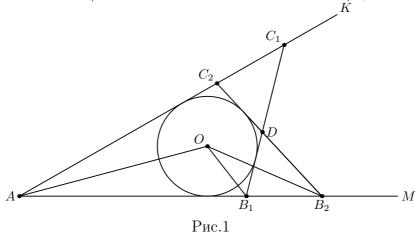
V Олимпиада по геометрии им. И.Ф.Шарыгина Заочный тур. Решения

1. (Д.Прокопенко) (8) Точки B_1 и B_2 лежат на луче AM, а точки C_1 и C_2 на луче AK. Окружность с центром O вписана в треугольники AB_1C_1 и AB_2C_2 . Докажите, что углы B_1OB_2 и C_1OC_2 равны.

Решение. Пусть отрезки B_1C_1 и B_2C_2 пересекаются в точке D (рис.1). Тогда по теореме о внешнем угле треугольника $\angle B_1OB_2 = \angle AB_1O - \angle AB_2O = (\angle AB_1C_1 - \angle AB_2C_2)/2 = \angle B_1DB_2/2$. Аналогично $\angle C_1OC_2 = \angle C_1DC_2/2$, т.е. эти углы равны.



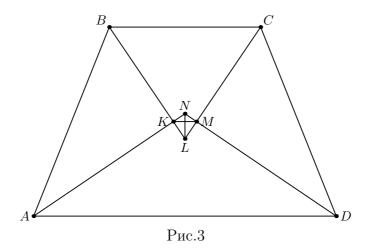
2. (Б.Френкин) (8) Через каждую вершину неравнобедренного треугольника *ABC* проведен отрезок, разбивающий его на два треугольника с равными периметрами. Верно ли, что все эти отрезки имеют разные длины?

Ответ. Да.

Решение. Предположим, например, что отрезки AA' и BB' равны. Тогда из равенства периметров треугольников AA'B и AA'C следует, что BA' = (AB + BC + CA)/2 - AB. Аналогично, AB' = (AB + BC + CA)/2 - AB, и значит, треугольники ABA' и BAB' равны по трем сторонам. Но тогда $\angle A = \angle B$, что противоречит неравнобедренности треугольника ABC.

3. (Д.Шноль) (8) Биссектрисы углов трапеции образуют при пересечении четырехугольник с перпендикулярными диагоналями. Докажите, что трапеция равнобокая.

Решение. Пусть KLMN — четырехугольник, образованный биссектрисами (рис. 3). Так как AK и BK — биссектрисы смежных углов трапеции, то $\angle LKN = 90^\circ$. Аналогично, $\angle LMN = 90^\circ$. Следовательно, $LK^2 + KN^2 = LM^2 + MN^2$. С другой стороны, из перпендикулярности диагоналей получаем, что $KL^2 + MN^2 = KN^2 + LM^2$. Из этих двух равенств следует, что KL = LM и MN = NK, а значит $\angle NKM = \angle NMK$. Но точки K, M, как точки пересечения биссектрис смежных углов, равноудалены от оснований трапеции, т.е. $KM \parallel AD$. Поэтому $\angle CAD = \angle BDA$, и трапеция равнобокая.



4. (Д.Прокопенко) (8–9) Две окружности пересекаются в точках P и Q. Из точки Q пустили в каждую из окружностей по одному лучу, которые отражаются от окружностей по закону "угол падения равен углу отражения". Точки касания траектории первого луча — A_1, A_2, \ldots второго — B_1, B_2, \ldots

Оказалось, что точки A_1 , B_1 и P лежат на одной прямой. Докажите, что тогда все прямые A_iB_i проходят через точку P.

Решение. При отражении лучей от окружностей выполняются условия $QA_1 = A_1A_2 = A_2A_3 = \cdots$ и $QB_1 = B_1B_2 = B_2B_3 = \cdots$. Значит, $\angle(PQ, PA_1) = \angle(PA_1, PA_2) = \angle(PA_2, PA_3) = \cdots$ и $\angle(PQ, PB_1) = \angle(PB_1, PB_2) = \angle(PB_2, PB_3) = \cdots$ (углы ориентированные). Кроме того, так как точки A_1 , B_1 , P лежат на одной прямой, то $\angle(PQ, PA_1) = \angle(PQ, PB_1)$. Следовательно, при любом i имеем $\angle(PA_{i-1}, PA_i) = \angle(PB_{i-1}, PB_i)$, откуда по индукции получаем, что точки A_i , B_i , P лежат на одной прямой.

5. (Д.Шноль) (8–9) Дан треугольник ABC и построена вневписанная окружность с центром O, касающаяся стороны BC и продолжений сторон AB и AC. Точка O_1 симметрична точке O относительно прямой BC. Найдите величину угла A, если известно, что точка O_1 лежит на описанной около треугольника ABC окружности.

Решение. Из условия задачи следует, что $\angle BOC = \angle BO_1C = \angle A$. С другой стороны, $\angle BOC = 180^\circ - (180^\circ - \angle B)/2 - (180^\circ - \angle C)/2 = (180^\circ - \angle A)/2$. Отсюда получаем, что $\angle A = 60^\circ$.

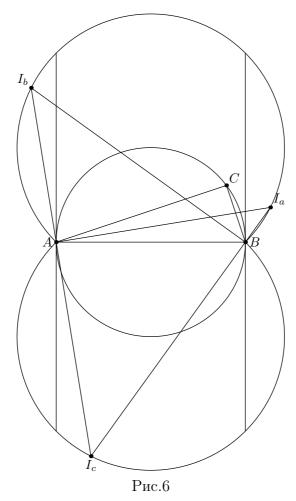
6. (Б.Френкин) (8–9) Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу.

Решение. Пусть ABC — прямоугольный треугольник с гипотенузой AB, I_a , I_b , I_c — центры его вневписанных окружностей (см. рис. 6). Тогда

$$\angle AI_cB = 180^{\circ} - (180^{\circ} - \angle BAC)/2 - (180^{\circ} - \angle ABC)/2 = (\angle BAC + \angle ABC)/2 = 45^{\circ},$$

$$\angle AI_aB = 180^{\circ} - \angle BAC/2 - \angle ABC - (180^{\circ} - \angle ABC)/2 = 90^{\circ} - (\angle BAC + \angle ABC)/2 = 45^{\circ}$$

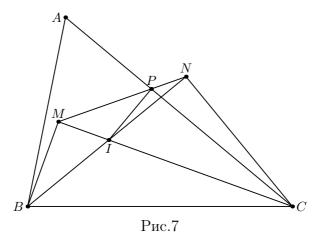
и аналогично $\angle AI_bB=45^\circ$, причем точки I_a , I_b лежат по одну сторону от прямой AB, а I_c по другую. Следовательно, все эти три точки лежат на двух окружностях c_1, c_2 , проходящих через точки A, B, в которых хорда AB стягивает дугу в 90°.



Пусть прямые k,l проходят соответственно через A,B перпендикулярно AB. Когда точка C описывает полуокружность с диаметром AB, каждый из центров пробегает четверть соответствующей окружности. А именно, I_a пробегает дугу между B и точкой пересечения окружности с $l;\ I_b$ — дугу между A и точкой пересечения окружности с k; I_c — дугу между точками пересечения окружности с k и l. Когда C описывает всю окружность с диаметром AB, исключая точки A,B, центры пробегают искомое Γ МТ, а именно дуги окружностей c_1,c_2 , которые лежат вне окружности с диаметром AB и из которых исключены их концы A,B и точки их пересечения с прямыми k,l.

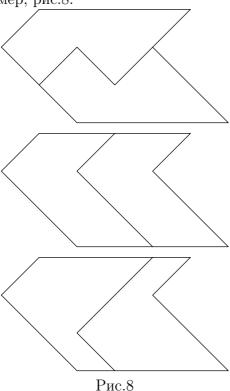
7. (В.Протасов) (8–9) Дан треугольник ABC. Из вершин B и C опущены перпендикуляры BM и CN на биссектрисы углов C и B соответственно. Докажите, что прямая MN пересекает стороны AC и AB в точках их касания со вписанной окружностью.

Решение. Пусть I — центр вписанной окружности треугольника ABC, P — точка пересечения MN и AC (рис. 7). Так как точки M и N лежат на окружности с диаметром BC, то $\angle MNB = \angle MCB = \angle ACI$. Следовательно, точки C, I, P, N лежат на одной окружности и $\angle CPI = \angle CNI = 90^\circ$. Значит, P — точка касания AC с вписанной окружностью. Для стороны AB доказательство аналогично.



8. (С.Маркелов) (8–10) Многоугольник можно разрезать на две равные части тремя различными способами. Верно ли, что у него обязательно есть центр или ось симметрии?

Ответ. Нет, см., например, рис.8.



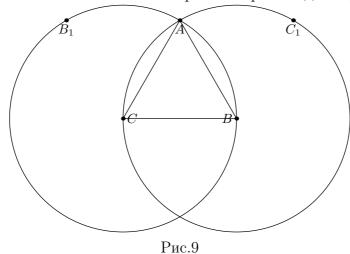
- 9. (В.А.Ясинский, Украина) (8–11) На плоскости задано n точек, являющихся вершинами выпуклого n-угольника, n>3. Известно, что существует ровно k равносторонних треугольников со стороной 1, вершины которых заданные точки.
 - а) Докажите, что $k < \frac{2}{3}n$.
 - б) Приведите пример конфигурации, для которой k>0,666n.

Решение. а) Для каждой из данных точек существует проходящая через неё прямая, такая что все другие заданные точки лежат по одну сторону от этой прямой. Это позволяет среди всех единичных треугольников с вершиной в рассматриваемой

точке выделить два треугольника — "крайний левый" треугольник и "крайний правый" треугольник (не исключено, что они могут совпадать). Будем называть эти два единичных треугольника присоединёнными к этой вершине

Лемма. Каждый единичный треугольник будет присоединённым, по крайней мере, трижды.

Доказательство. Предположим, что единичный треугольник не является "крайним левым" для вершины C и не является "крайним правым" для вершины B (см. рис.9).



Тогда на дугах AB_1 и AC_1 обязательно будут заданные точки. Но эти точки вместе с точками A, B и C не образуют выпуклую оболочку. Поэтому этот треугольник будет присоединённым одним из двух выше указанных способов. Значит, он будет "крайним левым"для вершины C или "крайним правым"для вершины B. Аналогично, он будет "крайним левым"для вершины A или "крайним правым"для вершины C, а также, он будет "крайним левым"для вершины B или "крайним правым"для вершины A. А это значит, что он будет присоединённым по крайней мере трижды, что и требовалось доказать.

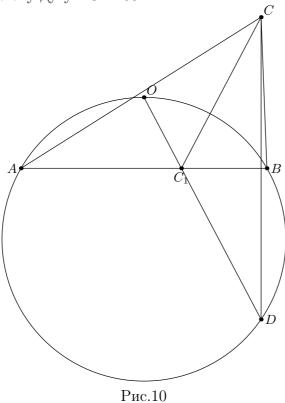
Предположим теперь, что для заданных точек существует k единичных треугольников. Поскольку для каждой из n точек существует максимум два присоединённых треугольника, то 2n — это наибольшее количество всех возможных присоединений. Так как каждый единичный треугольник будет присоединённым, по крайней мере, трижды, то 3k — это наименьшее количество из всех возможных присоединений. Таким образом, 3k < 2n, т.е. $k < \frac{2}{5}n$.

б) Рассмотрим ромб, который состоит из двух правильных треугольников, и будем поворачивать его на очень "маленькие"
углы вокруг одной из его тупых вершин так, что в результате получим m ромбов.

Если все углы поворота меньше $\pi/3$, то все вершины наших ромбов будут вершинами выпуклого многоугольника. При этом $n=3m+1,\ k=2m,$ и, если m достаточно велико, k>0,666n.

10. (Ф.Ивлев) (9) Пусть ABC — остроугольный треугольник, CC_1 — его биссектриса, O — центр описанной окружности. Точка пересечения прямой OC_1 с перпендикуляром из C на AB лежит на описанной окружности треугольника AOB. Найдите угол C.

Решение. Пусть D — точка пересечения OC_1 с перпендикуляром из C на AB (рис.10). Так как D лежит на описанной окружности треугольника AOB и AO = OB, то $\angle ADC_1 = \angle BDC_1$. Значит, $AD/BD = AC_1/BC_1 = AC/BC$. С другой стороны, так как $CD \perp AB$, то $AC^2 + BD^2 = AD^2 + BC^2$. Из этих равенств следует, что AC = AD, т.е. D симметрична C относительно AB. Но тогда CC_1 пересекает серединный перпендикуляр к AB в точке, симметричной O. Поскольку точка пересечения биссектрисы и серединного перпендикуляра лежит на описанной окружности, получаем, что хорда AB делит перпендикулярный ей радиус пополам. Следовательно, опирающийся на эту дугу $\angle C = 60^\circ$.



11. (А.Блинков) (9) Дан четырехугольник ABCD. Оказалось, что окружность, описанная около треугольника ABC, касается стороны CD, а окружность, описанная около треугольника ACD, касается стороны AB. Докажите, что диагональ AC меньше, чем расстояние между серединами сторон AB и CD.

Решение. Из условия следует, что $\angle BAC + \angle BCD = \angle ACD + \angle BAD = 180^\circ$. Значит, $\angle BCA = \angle CAD$, т.е. $AD \parallel BC$ и отрезок, соединяющий середины AB и CD, является средней линией трапеции и равен (AD+BC)/2. Кроме того, так как $\angle ACD = \angle ABC$ и $\angle BAC = \angle CDA$, то треугольники ABC и DCA подобны. Следовательно, $AC^2 = AD \cdot BC$ и утверждение задачи вытекает из неравенства о среднем арифметическом и среднем геометрическом.

12. (Д.Прокопенко) (9–10) В треугольнике ABC провели биссектрису CL. Точки A_1 и B_1 симметричны точкам A и B относительно CL, A_2 и B_2 симметричны точкам A и B относительно L. Пусть O_1 и O_2 — центры окружностей, описанных около треугольников AB_1B_2 и BA_1A_2 . Докажите, что углы O_1CA и O_2CB равны.

Решение. Из условия следует, что $CB_1/CA = CB/CA = BL/LA = B_2L/AL$, т.е.

 $B_1B_2 \parallel CL$ (рис.12). Аналогично $A_1A_2 \parallel CL$. Значит, $\angle AB_1B_2 = \angle BA_1A_2 = \angle C/2$. При симметрии относительно CL точки B и A_1 перейдут в B_1 и A, а точка A_2 — в некоторую точку A'. При этом $\angle A'AB_2 + \angle A'B_1B_2 = \angle A + \angle B + 2\angle C/2 = 180^\circ$. Следовательно, четырехугольник $AA'B_1B_2$ вписанный и точки O_1 , O_2 симметричны относительно CL.



Рис.12

13. (А.Заславский) (9–10) В треугольнике ABC отметили центр вписанной окружности, основание высоты, опущенной на сторону AB, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стерли. Восстановите его.

Решение. Центры вписанной и вневписанной окружностей I и I_c лежат на биссектрисе угла C. Пусть C' — точка пересечения этой биссектрисы со стороной AB (рис.13). Тогда $CI/CI_c = r/r_c = C'I/C'I_c$, где r, r_c — радиусы вписанной и вневписанной окружностей. Поэтому для любой точки X окружности с диаметром CC' отношение XI/XI_c будет одним и тем же. Так как основание H высоты, опущенной на AB, лежит на этой окружности, $HI/HI_c = CI/C/I_c = C'I/C'I_c$, т.е. HC' и HC — внутренняя и внешняя биссектрисы угла IHI_c . Следовательно, проведя эти биссектрисы, мы восстановим точку C и прямую AB. Поскольку $\angle IAI_c = \angle IBI_c = 90^\circ$, точки A, B лежат на окружности с диаметром II_c . Соответственно, построив эту окружность и найдя точки ее пересечения с прямой AB, мы восстановим треугольник.

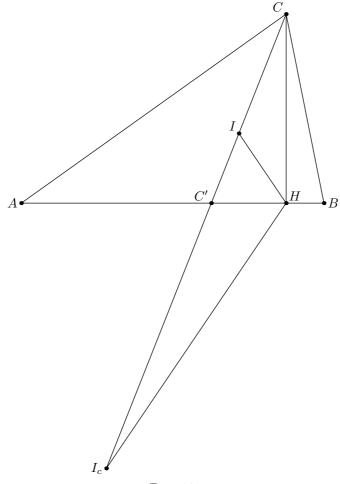
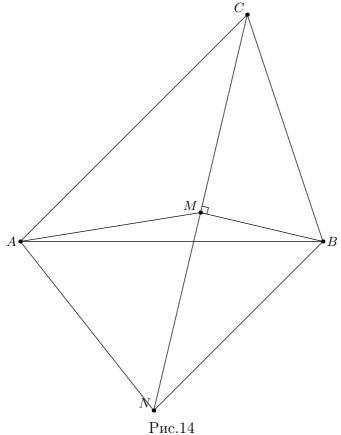


Рис.13

14. (В.Протасов) (9–10) Дан треугольник ABC площади 1. Из вершины B опущен перпендикуляр BM на биссектрису угла C. Найдите площадь треугольника AMC.

Первое решение. Проведем через точку B прямую, параллельную AC до пересечения с биссектрисой угла C в точке N (рис.14). Так как $\angle BNC = \angle ACN = \angle BCN$, то треугольник BCN — равнобедренный и BM его медиана. Следовательно, $S_{AMC} = \frac{1}{2}S_{ABC} = \frac{1}{2}S_{ABC} = \frac{1}{2}$.



Второе решение. Так как $S_{AMC}=\frac{1}{2}AC\cdot CM\sin\frac{C}{2}$ и $CM=BC\cos\frac{C}{2}$, то $S_{AMC}=\frac{1}{4}AC\cdot BC\sin C=\frac{S_{ABC}}{2}=\frac{1}{2}$.

15. (Б.Френкин) (9–10) Даны окружность и не лежащая на ней точка. Из всех треугольников, одна вершина которых совпадает с данной точкой, а две другие лежат на окружности, выбран треугольник наибольшей площади. Докажите, что он равнобедренный.

Решение. Пусть C — данная точка, A, B — точки на окружности (рис.15). Если касательная к окружности в точке A не параллельна CB, то, переместив точку A, можно увеличить расстояние от нее до BC, а значит, и площадь треугольника. Аналогично, касательная в точке B параллельна CA. Следовательно, прямые AC и BCсимметричны относительно серединного перпендикуляра к AB, т.е. AC = BC.

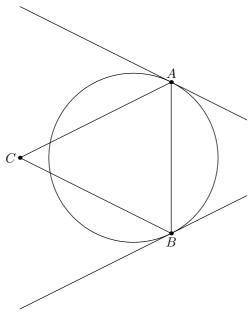


Рис.15

Отметим, что проведенное рассуждение не зависит от того, лежит ли данная точка внутри или вне окружности.

16. (А.Заславский) (9–11) Три прямые проходят через точку O и образуют попарно равные углы. На одной из них взяты точки $A_1,\ A_2,\$ на другой $-\ B_1,\ B_2,\$ так что точка C_1 пересечения прямых A_1B_1 и A_2B_2 лежит на третьей прямой. Пусть C_2 — точка пересечения A_1B_2 и A_2B_1 . Докажите, что угол C_1OC_2 прямой.

Решение. Пусть C_3 — точка пересечения прямых OC_1 и A_2B_1 (рис.16). Применив сначала к треугольнику OA_2B_1 и точке C_1 теорему Чевы, а затем к этому же треугольнику и прямой A_1B_2 теорему Менелая, получаем, что $C_2A_2/C_2B_1=C_3A_2/C_3B_1=OA_2OB_1$. Следовательно, OC_2 — внешняя биссектриса угла A_2OB_1 и $OC_2\perp OC_1$.

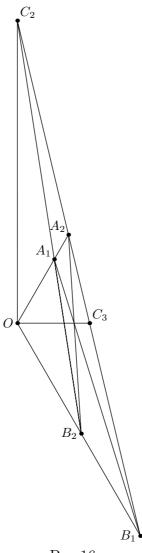


Рис.16

17. (А. Заславский.) (9–11) Дан треугольник ABC и точки X, Y, не лежащие на его описанной окружности. Пусть A_1 , B_1 , C_1 — проекции X на BC, CA, AB, а A_2 , B_2 , C_2 — проекции Y. Докажите, что перпендикуляры, опущенные из A_1 , B_1 , C_1 на, соответственно, B_2C_2 , C_2A_2 , A_2B_2 , пересекаются в одной точке тогда и только тогда, когда прямая XY проходит через центр окружности, описанной около ABC.

Решение. Пусть прямая XY проходит через центр O описанной окружности. Зафиксируем точку Y и будем двигать точку X по прямой. При этом перпендикуляры из A_1 , B_1 , C_1 на стороны $A_2B_2C_2$ перемещаются равномерно и параллельно себе и, значит, точки их пересечения движутся по прямым. Когда точка X совпадает с O или Y, три перпендикуляра пересекаются в одной точке, следовательно, это выполняется для любого положения точки X.

Из предыдущего рассуждения следует, что для фиксированной точки Y множество точек X, для которых перпендикуляры пересекаются в одной точке, это либо прямая OY, либо вся плоскость. Предположим, что имеет место второй случай, и возьмем в качестве X точку C. Тогда точки A_1 , B_1 совпадают с C, а C_1 с основанием высоты треугольника ABC, проведенной из C. Так как три перпендикуляра пересекаются в одной точке, $A_2B_2 \parallel AB$, т.е. Y лежит на прямой OC. Взяв теперь в качестве X

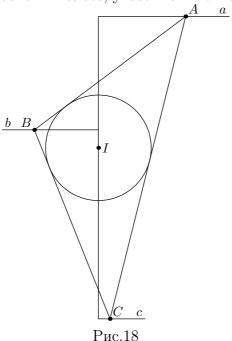
другую вершину треугольника, получим, что Y совпадает с O.

18. (Б.Френкин) (9–11) На плоскости даны три параллельные прямые. Найдите геометрическое место центров вписанных окружностей треугольников, вершины которых расположены (по одной) на этих прямых.

Ответ. Полоса, края которой не входят в ГМ, параллельны данным прямым и находятся посредине между средней прямой и крайними.

Решение. Если произвольный треугольник с вершинами на данных прямых перенести параллельно этим прямым, его центр вписанной окружности подвергнется такому же переносу. Следовательно, искомое ГМТ является полосой с краями, параллельным исходным прямым.

Пусть a, c — крайние из исходных прямых, b — средняя, и на них соответственно находятся вершины треугольника A, C, B. Проведём диаметр вписанной окружности, перпендикулярный этим прямым, и рассмотрим его конец, ближайший к прямой a (рис.18). Он лежит ближе к a, чем точка касания вписанной окружности со стороной AB, и, значит, ближе к a, чем прямая b. Так как другой конец диаметра находится ближе к a, чем прямая c, то середина диаметра лежит ближе к a, чем прямая, средняя между b и c. Поменяв в рассуждении местами a и c, получаем, что центр вписанной окружности I располагается в полосе, указанной в ответе.



Возьмём теперь произвольный треугольник ABC с вершинами на соответствующих прямых. Переместим вершину B так, чтобы сторона AB стала перпендикулярна исходным прямым. Теперь устремим точку C в бесконечность. Углы при вершинах A и B стремятся к прямым, а точка пересечения их биссектрис, т.е. I, стремится к вершине равнобедренного прямоугольного треугольника с гипотенузой AB. Значит, I неограниченно приближается к прямой посредине между a и b. Аналогично, начав с того же треугольника, можно устремить I к прямой посредине между b и c. Следовательно, возможные положения I заполняют всю полосу, указанную в ответе.

19. (Б.Френкин) (10–11) Дан выпуклый n-угольник $A_1 \dots A_n$. Пусть $P_i \, (i=1,\dots,n)$ —

такая точка на его границе, что прямая $A_i P_i$ делит его площадь пополам. Дано, что все точки P_i не совпадают с вершинами и лежат на k сторонах n-угольника. Каково наименьшее и наибольшее возможное значение k при каждом данном n?

Ответ. Наименьшее значение равно 3, наибольшее равно n-1 при четном n и n при нечетном.

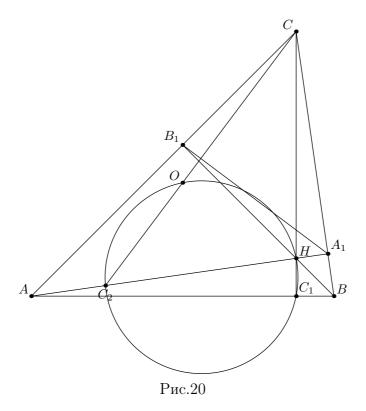
Решение. Так как отрезки A_iP_i делят площадь многоугольника пополам, любые два из них пересекаются. Пусть точка P_i лежит на стороне A_jA_{j+1} . Тогда точки P_j и P_{j+1} лежат по разные стороны от A_i , т.е. всегда найдутся три точки, лежащие на разных сторонах. С другой стороны, если две вершины многоугольника являются вершинами правильного треугольника, а все остальные расположены вблизи его третьей вершины, то все точки P_i лежат на трех сторонах многоугольника.

Очевидно, для правильного n-угольника при нечетном n все P_i лежат на разных сторонах. Пусть n=2m. Так как отрезки $A_m P_m$ и $A_{2m} P_{2m}$ пересекаются, точки P_m и P_{2m} лежат по одну сторону от диагонали $A_m A_{2m}$. По другую сторону от этой диагонали лежат m сторон многоугольника, и точка P_i может попасть на эти стороны, только если соответствующая вершина A_i лежит между P_m и P_{2m} . Но таких вершин не больше, чем m-1, значит существует сторона, на которой нет точек P_i .

Рассмотрим теперь n-угольник, вершины A_1, \ldots, A_{n-2} которого являются вершинами правильного n-1-угольника, а вершины A_{n-1}, A_n расположены вблизи оставшейся вершины этого n-1-угольника. Точки P_i расположены на всех сторонах построенного многоугольника, кроме $A_{n-1}A_n$.

20. (Д.Прокопенко) (10–11) В остроугольном треугольнике ABC точка H — ортоцентр, O — центр описанной окружности, AA_1 , BB_1 и CC_1 — высоты. Точка C_2 симметрична C относительно A_1B_1 . Докажите, что H, O, C_1 и C_2 лежат на одной окружности. **Решение.** Так как $CA_1/CA = CB_1/CB = \cos C$, треугольники ABC и A_1B_1C подобны. Значит, поскольку $\angle ACO = \angle BCC_1 = 90^\circ - \angle B$, прямая CO содержит высоту треугольника A_1B_1C , т.е. точки C, C, C2 лежат на одной прямой (рис.20). Кроме того, из подобия треугольников ABC и A_1B_1C вытекает, что $CC_2/CC_1 = 2\cos C$. С другой стороны, известно, что $CH = 2CO\cos C$. Следовательно, $CO \cdot CC_2 = CH \cdot CC_1$,

что равносильно утверждению задачи.



21. (Ф.Нилов) (10–11) Дан четырехугольник ABCD, противоположные стороны которого пересекаются в точках P и Q. Две прямые, проходящие через эти точки, пересекают стороны четырехугольника в четырех точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей ABCD.

Решение. Аффинным преобразованием переведем параллелограмм в квадрат и рассмотрим систему координат, оси которой совпадают с диагоналями квадрата. Будем считать, что стороны четырехугольника пересекают оси координат в точках $(\pm 1,0)$, $(0,\pm 1)$, а точки P,Q имеют координаты (p,0) и (0,q) соответственно. Тогда стороны четырехугольника лежат на прямых с уравнениями $\frac{x}{p}\pm y=1, \pm x+\frac{y}{q}=1$; вершины имеют координаты $(\frac{p(q-1)}{pq-1},\frac{q(p-1)}{pq-1}), (-\frac{p(q-1)}{pq+1},\frac{q(p+1)}{pq+1}), (-\frac{p(q+1)}{pq-1},-\frac{q(p+1)}{pq-1}), (\frac{p(q+1)}{pq-1},-\frac{q(p-1)}{pq+1}),$ и нетрудно видеть, что прямая, соединяющая середины диагоналей, проходит через начало координат.

22. (А.Заславский) (10–11) Постройте четырехугольник, в который можно вписать и около которого можно описать окружность, по радиусам этих окружностей и углу между диагоналями.

Решение. Если радиусы описанной и вписанной окружностей четырехугольника равны R и r, а растояние между их центрами O и I равно d, то

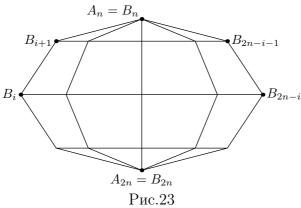
$$\frac{1}{r^2} = \frac{1}{(R+d)^2} + \frac{1}{(R-d)^2}.$$

Значит, по данным R, r мы можем определить d и построить эти окружности. Диагонали всех четырехугольников с данными описанной и вписанной окружностями пересекаются в одной и той же точке L, лежащей на прямой OI, а их середины лежат на окружности с диаметром OL. Кроме того, отрезок, соединяющий середины

диагоналей, проходит через точку I, а его длина равна $OL\sin\phi$, где ϕ — данный угол. Построив проходящую через I хорду такой длины, найдем середины диагоналей, а затем и вершины четырехугольника.

23. (В.Протасов) (10–11) Верно ли, что при любом n правильный 2n-угольник является проекцией некоторого многогранника, имеющего не более, чем n+2 грани?

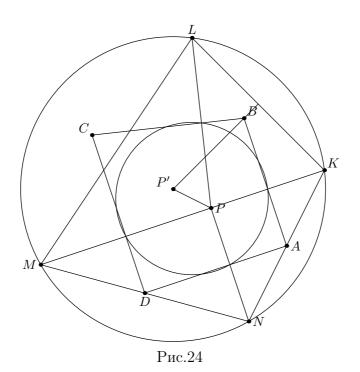
Решение. Да. Применим к правильному 2n-угольнику $A_1 \dots A_{2n}$ растяжение относительно диагонали A_nA_{2n} с коэффициентом k>1 (рис.23). Теперь перегнем полученный многоугольник по прямой A_nA_{2n} , так чтобы его вершины $B_1, \dots, B_{n-1}, B_{n+1}, \dots, B_{2n-1}$ проецировались в вершины исходного правильного многоугольника. Тогда все прямые B_iB_{2n-i} будут параллельны и многогранник, ограниченный треугольниками $B_{n-1}B_nB_{n+1}$, $B_{2n-1}B_{2n}B_1$, трапециями $B_iB_{i+1}B_{2n-i-1}B_{2n-i}$ и двумя половинами 2n-угольника, будет искомым.



24. (Ф.Нилов) (11) Дана четырёхугольная пирамида, в которую можно вписать сферу. Точку касания этой сферы с основанием пирамиды спроектировали на рёбра основания. Докажите, что все проекции лежат на одной окружности.

Решение. Пусть ABCD — основание пирамиды, P — точка касания основания с вписанной сферой, P' — точка касания основания с вневписанной сферой, касающейся основания и продолжения боковых граней. Тогда расстояния от P до сторон основания относятся как котангенсы половин двугранных углов при соответствующих ребрах, а расстояния от P' — как их тангенсы. Отсюда следует, что прямые, соединяющие каждую вершину основания с P и P', симметричны относительно биссектрисы соответствующего угла основания.

Пусть теперь K, L, M, N — точки, симметричные P относительно AB, BC, CD, DA. Так как, например, BK = BP = BL, серединный перпендикуляр к KL совпадает с биссектрисой угла KBL, т.е. прямой BP' (рис.24). Значит, P' — центр окружности, проходящей через точки K, L, M, N. Применив гомотетию с центром P и коэффициентом 1/2, получаем, что середина отрезка PP' — центр окружности, проходящей через проекции P на ребра основания.



Нетривиальные критерии

- 4. В индукционном переходе перепутаны точки A_n и Q-5 баллов.
- 5. Верный ответ 1 балл.
- 6. Упоминается угол 45° , но ГМТ не приводится 2 балла.

Рассмотрен только один из трех центров -3 балла.

Верное решение, но не выколоты точки -5 баллов.

- 10. Верный ответ 1 балл.
- 12. Замечено, но не доказано равенство окружностей или симметричность центров относительно биссектрисы 2 балла.
 - 13. Упоминаются факты, имеющие отношение к решению, но построения нет -1 балл. Верное построение с недостаточным обоснованием -5 баллов.
 - 17. Доказана только достаточность 3 балла.
 - 18. Не доказано, что центр не может лежать вне полосы 3 балла.
 - He обосновано, что любая точка внутри полосы годится 4 балла.
 - 19. Верное решение с заменой площади на периметр -6 баллов.
 - 23. Верный пример без обоснования 6 баллов.