
Third olympiad, year 2007

Correspondence round. Solutions

1. (B.Frenkin) A triangle is cut into several (at least two) triangles. One
of them is isosceles (non-regular) while the others are regular. Find the
angles of the initial triangle.

Answer. 30◦, 60◦, 90◦.

Solution. Among the vertices of the non-regular triangle at least one is
not a vertex of the initial triangle. The sum of angles of the dissection
triangles, adjacent to this vertex is equal to 180◦ or 360◦. Hence the angle
of the triangle is a multiple of 60◦, and since the triangle is isosceles but
non-regular this angle equals 120◦. Then the two other angles of this
triangle are equal to 30◦ and, as they are not multiples of 60◦, the
respective vertices are the vertices of the initial triangle. The angles of
the triangle at these vertices can only be equal to either 30◦, 90◦ or
150◦. Moreover at least one of the two angles is not 30◦, whereas their
sum is less than 180◦. The only possible alternatives are 30◦ and 90◦.
Such triangle can be split in the required manner, for instance, along
the median drawn from the vertex of the right triangle (see the �gure).

Fig. 1

2. (A.Blinkov) Each diagonal of a quadrilateral divides it into two isosceles
triangles. Is it correct that the quadrilateral is a rhombus?

Solution. No, this is incorrect. For example, let ABC be an isosceles
triangle whereby the angle B is obtuse and not equal to 120◦, and let the
point D be the circumcenter of ABC. Then the quadrilateral ABCD
meets the problem conditions and is not a rhombus.
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3. (B.Frenkin) The segments linking an inner point of a convex non-equilateral
n-gon with its vertices split the n-gon into n congruent triangles. At
what minimal n is it possible?

Answer. At n = 5.

Solution. Let us prove that for n = 3, 4 the above situation is impossible.
If n = 3, the angles of the dissection triangles that meet at the inner
point are equal, because the sum of any two distinct angles of these
triangles is less than 180◦. But if so, then their opposite sides which are
the sides of the polygon will also be equal.

The argument can follow a di�erent line. Since the resulting triangles
are congruent, the radii of their circumcircles and their areas are equal
too. The �rst fact implies that the point determining the dissection is
the orthocenter of the triangle. The second condition implies that this
point is the mass center of the triangle. However, the orthocenter and
the mass center can only coincide in a regular triangle.

Assume that the quadrilateral ABCD is cut into congruent triangles by
the segments drawn from the point O. Then ∠OAB = ∠OCB as angles
opposite to the same side of congruent triangles. Similarly ∠OAD =
∠OCD, ∠OBC = ∠ODC, ∠OBA = ∠ODA. Therefore, ∠A = ∠C,
∠B = ∠D, soABCD is a parallelogram. As line segments fromO divide
it into congruent triangles, O is the point of meet of its diagonals. Hence
equality of the triangles implies that ABCD is a rhombus.

If n = 5 the situation in question is possible (see the �gure).
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Fig. 2

4. (A.Blinkov) Does there exist a parallelogram such that all its pairwise
intersections of bisectors lie outside it?

Solution. No. Let side AD of the parallelogram ABCD be not less
than AB. Mark the segment AE = AB on AD and draw a line parallel
to AB through E. We will obtain a rhombus, wherein the intersection
of bisectors is the incenter and as such lies within the rhombus. However
it serves as an intersection of two bisectors of the initial parallelogram
in which the rhombus is contained. Therefore this point belongs to the
parallelogram.

5. (D.Shnoll)A non-convex n-gon has been split by a straight line into three
pieces. Then two of them being put together, form a polygon equal to
the third piece. Can n be equal to

a) �ve?

b) four?

Answer. a) yes (see the �gure).
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Fig. 3

b) yes (see the �gure).
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Fig. 4

6. (B.Frenkin) a) How many symmetry axes are possible for a checked
polygon (i.e. a polygon with all its sides on the lines of a squared paper)?
Indicate all possible values.) b) How many symmetry axes are possible
for a checked polyhedron (i.e. a polyhedron built of equal cubes adjacent
with their sides)?

Answer. a) 0, 1, 2 or 4. b) 0, 1, 3, 5 or 9.

Solution. a) Each symmetry axis of a checked polygon passes through
its certain cell that will map into itself under the symmetry about this
axis. Therefore the axis is parallel either to a side or to a diagonal of the
cell. Hence, a checked polygon can possibly have only four symmetry
axes.

A restricted geometric shape cannot have two parallel symmetry axes.
Indeed, a composition of symmetries with respect to a couple parallel
lines is a parallel transfer. A restricted geometric shape cannot map
onto itself under a transfer, therefore at least one of these lines is not
its symmetry axis.

Hence, a checked polygon has no more than 4 symmetry axes. If it has
three axes of symmetry, then the composition of these symmetries is a
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symmetry about the fourth line. Examples of polygons having 0, 1, 2 or
4 axes are shown in the �gure.

Fig. 5

b) Similarly to part a) we obtain that all the symmetry axes have
di�erent directions and are parallel either to edges of the cubes forming
the polyhedron or to diagonals of its faces. Hence, the number of symmetry
axes does not exceed 9. Let the lines l, l1 be the symmetry axes. If the
angle between them is not right, then the line l2, symmetrical to l1 with
respect to l will also be a symmetry axis. If, alternatively, l ⊥ l1, then
the line perpendicular to both of them will also be a symmetry axis. So,
all the symmetry axes except for l can be divided into pairs, i.e. their
total number is odd. It is easily seen that all odd values are possible
except for 7. If there are 7 axes then re�ecting them with respect to
each other we will obtain two additional axes.

7. (B.Frenkin) A convex polygon is circumscribed about a circle. Its points
of tangency with the circle form a polygon with the same tuple of angles
(the sequence of angles may be di�erent). Is it correct that the polygon
is regular?

Answer. Yes, it is.

Solution. (M.Kayranbay, Kazakhstan) Let A1A2 . . . An be the given
polygon, B1, B2,. . . ,Bn be the points of tangency of the incircle with
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the sides A1A2, A2A3,. . . ,AnA1. Let us denote values of the angles in
the �rst polygon as a1, . . . , an, in the second one as b1, . . . , bn. Then bi =
(ai + ai+1)/2. Multiplying n such equations we obtain 2na1a2 · · · an =
(a1 + a2) · · · (an−1 + an)(an + a1). However, by AM-GM inequality we
have ai+ai+1 ≥ 2

√
aiai+1. The resulting equation implies that all angles

of the polygons are equal, and since the polygon B1 . . . Bn is inscribed,
the polygons are regular.

8. (A.Zaslavsky) Three circles intersect at point P , while their secondary
points of intersection A, B, C are collinear; A1, B1, C1 are secondary
points of intersection for lines AP ,BP , CP with respective circles; C2 is
the point of intersection for lines AB1 and BA1, and A2, B2 are de�ned
similarly. Prove that the triangles A1B1C1 and A2B2C2 are congruent.

Solution. Since quadrilaterals PAB1C and PBAC1 are inscribed, we
have∠CAC2 = ∠CAB1 = ∠CPB1 = ∠BAC1 (see the �gure). Similarly,
∠ABC2 = ∠ABC1, i.e. the points C1, C2 are symmetrical with respect
to line AB. Repeating the same argument for other two pairs of points,
we obtain that the triangles A1B1C1 and A2B2C2 are symmetrical with
respect to this line and therefore congruent.
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Fig. 6

9. (A.Zaslavsky) Two convex quadrilaterals are such that the sides of each
one lie on perpendicular bisectors to the sides of the other. Find their
angles.

Solution. Suppose the side C ′D′ of the quadrilateral A′B′C ′D′ belongs
to the perpendicular bisector to side AB of the quadrilateral ABCD,
while the side D′A′ belongs to the perpendicular bisector to BC. Then
D′ is the circumcenter of the triangle ABC. Similarly A′, B′, C ′ are the
circumcenters of the triangles BCD, CDA, DAB. Therefore, B′D′ is
the perpendicular bisector toAC. In turn,AC is a perpendicular bisector
to one of the diagonals in A′B′C ′D′, and since AC ⊥ B′D′ and B′D′ 6‖
A′C ′, AC is the perpendicular bisector to B′D′, i.e. AB′CD′ is a
rhombus. Composition of symmetries with respect to lines C ′D′, D′A′,
A′B′ and B′C ′ �xes the point A and therefore is a rotation centered at
A′. On the other hand, it is the composition of the rotation centered at
D′, by doubled angle C ′D′A′ and the rotation centered at B′, by doubled
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angle A′B′C ′. Therefore ∠C ′B′A′ = ∠AB′D′ = ∠B′D′A = ∠A′B′C ′.
Similarly, ∠B′C ′D′ = ∠D′A′B′, i.e. A′B′C ′D′ is a parallelogram. The
sides ofABCD are perpendicular to the sides ofA′B′C ′D′, henceABCD
is a parallelogram with the same angles.

Since C is the circumcenter of the triangle B′C ′D′, we have ∠D′CB′ =
2∠C ′D′A′ = ∠B′D′C +∠CB′D′ = 90◦. Respectively, the acute angles
of parallelograms ABCD and A′B′C ′D′ are equal to 45◦. It is easily
seen that the two such parallelograms, mapped from one onto another
by a rotation through 90◦ around a common center, meet the conditions
of the problem (see the �gure).

Fig. 7

10. (A.Zaslavsky) Find the locus of regular triangles' centers, the sides of
which pass through the three given points A, B, C (i.e. there is exactly
one of the given points on each side or its extension).

Solution.LetA,B, C be the given points. Construct circle arcs containing
an angle of 60◦, on the sides and outside triangleABC. Find the midpoints
A′, B′, C ′ of the complementary circle arcs. The lines linking the center
of the triangle with its vertices pass through A′, B′, C ′. The vertices
move along the constructed circles at constant angular speeds, hence
the angles, at which the segments A′B′, B′C ′, C ′A′ are visible from the
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center, remain constant. So, the locus in question is the circle A′B′C ′

(see the �gure).
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Fig. 8

11. (D.Schnoll) A boy and his father stand by the sea shore. If the boy
stands on tiptoes his eyes are 1 meter high from the sea level. If he sits
over father's shoulders his eyes are 2 meters high from the sea level. How
many times farther does he see in the second case than in the �rst one?
(Find the answer with precision 0.1, assuming the radius of the Earth
equal to 6000 kilometers).

Solution. Visibility from height h above the sea level equals d =√
(R + h)2 −R2 =

√
2Rh− h2, where R is the radius of the Earth (see

the �gure). If h << R, then with high enough accuracy d =
√
2Rh.

Therefore the ratio in question can be accepted equal
√
2 or 1.4.
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Fig. 9

12. (A.Zaslavsky) Consider a rectangle ABCD and a point P . The lines
passing throughA andB and perpendicular to PC and PD respectively,
intersect at the point Q. Prove that PQ ⊥ AB.

Solution one. Let U , V be projections of A and B on PC and PD
respectively. Then U and V belong to the circumcircle of ABCD, and
by applying Pascal theorem to the polygonal line AUCBVD we obtain
the statement of the problem (see the �gure).
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Fig. 10

Solution two. Since ABCD is a rectangle, the scalar products of
(PA, PC) and (PB, PD) are equal. However (PA, PC) = (PC, PA)+
(PC,AQ) = (PC, PQ). Similarly, (PB, PD) = (PD,PQ). Therefore,
(PQ,CD) = 0.

Solution three. Let Q′ be the image of Q under the transfer by
vector BC. Then CQ′ ‖ BQ ⊥ DP , DQ′ ⊥ CP . Therefore, P is
the orthocenter in the triangle CDQ′, and PQ′ ⊥ CD.

13. (A.Zaslavsky) The points X,Y are chosen on the side AB of the triangle
ABC so that AX = BY . The lines CX and CY have secondary
intersections with the circumcircle of the triangle at the points U and
V . Prove that all lines UV concur.

Solution one. Let Z be the point of intersection between AB and UV .
Applying sine theorem to triangles ZAU and ZBV we obtain (see the
�gure)
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Fig. 11

ZA

ZB
=
AU sin∠AUZ
BV sin∠BV Z

=
AU sin∠ACY
BV sin∠BCX

=
sin∠ACX sin∠ACY
sin∠BCX sin∠BCY

.

From triangle ACX we obtain sin∠ACX = AX
AC sin∠AXC. From the

above and the three analogous relations we obtain ZA
ZB = BC2

AC2 , i.e. this
ratio does not depend on the choice of points X, Y .

Solution two. The point C ′, symmetrical to C about the perpendicular
bisector to AB, belongs to the circumcircle of the triangle ABC. Let the
line tangent at this point intersect AB at point Z. Draw an arbitrary
secant to the circle through Z which will cross it at points U , V , and
�nd the meet points X, Y of the lines CU and CV with AB. We have

AX

BX
=
SACU
SBCU

=
AC · AU
BC ·BU

=
AU ·BC ′

BU · AC ′
.

Similarly
AY

BY
=
AV ·BC ′

BV · AC ′
.

Multiplying these equations we obtain

AX · AY
BX ·BY

=
AU

BV

AV

BU

(
BC ′

AC ′

)2

.

It follows from similarity of triangles ZAU and ZV B that AU
BV = ZU

ZB ,
while similarity of triangles ZAV and ZUB implies AV

BU = ZV
ZB . In
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addition, ZU · ZV = ZC ′2. Therefore,

AX

BX

AY

BY
=

(
ZC ′ ·BC ′

ZB · AC ′

)2

.

From similarity of triangles ZAC ′ and ZC ′B we obtain that the right
side of this ratio equals 1. It means that AX = BY and the point Z is
the common point of the lines from the problem statement.

14. (A.Zaslavsky) In a trapezoid with bases AD and BC, points P and
Q are midpoints of diagonals AC and BD respectively. Prove that if
∠DAQ = ∠CAB then ∠PBA = ∠DBC.

Solution one. Let L be the point of intersection of diagonals in a
trapezoid. Applying sine theorem to triangles AQD, AQB, ALD, ALB
we obtain that BL/DL = (AB/AD)2. Therefore BC/AB = AB/AD

and CL/AL = (BC/AB)2 which is equivalent to the problem statement.

Solution two. Let L andM be the midpoints ofAB andAD respectively.
Then, as PL ‖ AD,QM ‖ AB, we have∠AQM = ∠QAB = ∠CAD =
∠APL and therefore the triangles APL and AMQ are similar (see
the �gure). It follows that AP/AQ = AL/AM = AB/AD. Hence the
triangles ABP and ADQ are similar, i.e. ∠ABP = ∠ADQ = ∠CBQ.
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Fig. 12

15. (M.Volchkevich) Bisectors AA′,BB′ and CC ′ are drawn in the triangle
ABC. Let A′B′∩CC ′ = P and A′C ′∩BB′ = Q. Prove that ∠PAC =
∠QAB.
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Solution. Applying sine theorem to triangles AC ′Q and AA′Q we
obtain (see the �gure)
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Fig. 13

sin∠C ′AQ
sin∠A′AQ

=
C ′Q

A′Q

AA′

AC ′
=
BA′

BC ′
AA′

AC ′
.

Similarly
sin∠B′AP
sin∠A′AP

=
CA′

CB′
AA′

AB′
.

According to Cheva theorem these ratios are equal, which is equivalent
to the problem statement.

16. (V.Protasov) The points A, B are chosen on the sides of an angle. Two
lines are drawn through midpoint M of the segment AB, one of which
intersects the angle sides at points A1, B1, another one at points A2,
B2. The lines A1B2 and A2B1 intersect AB at points P and Q. Prove
that M is the midpoint of PQ.

Solution one. Let C be the vertex of the given angle. Considering
central projections of the line AB on the line AC from points B1, B2

we obtain equality of the cross ratios (see the �gure)
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Fig. 14

(AP ;MB) = (AA1;A2C) = (CA2;A1A) = (BQ;MA),

which is equivalent to the problem statement.

Solution two. Let us perform the central symmetry with respect to
the point M . Let the points A1 and B2 map into the points A′1 and
B′2 respectively. We need to prove that the lines AB,A2B1 and B′2A

′
1

concur. This follows from Desargues theorem applied to the triangles
AA2B

′
2 and BB1A

′
1. Since the intersection points of the lines AA2 and

BB1, A2B
′
2 and B1A

′
1, AB

′
2 and BA

′
1 belong to the same line, the lines

AB,A2B1 and B
′
2A
′
1 intersect in the same point.

Solution three. Let us perform the central symmetry with respect
to the point M . Let the points A1 and B2 map into the points A′1
and B′2 respectively. Draw a line parallel to BC through M . It follows

from similarity of triangles that B′
2A2

A2M
= 2B′

2A
BC , MA′

1

A′
1B1

= BC
2BB1

and
B1X
XB′

2
= B1B

B′
2A
, whereX is a point of intersection of the linesAB andB1B

′
2.

Having multiplied the equalities, we will obtain B′
2A2

A2M
· MA′

1

A′
1B1
· B1X
XB′

2
= 1.

Cheva theorem applied to the triangle MB1B
′
2 implies that the lines

MX,B1A2 and B
′
2A
′
1 concur as has been required.

17. (L.Yemelyanov) What triangles can be cut into three triangles with
equal radii of circumcircles?

Answer. All, except for isosceles not acute-angled triangles.

Solution. If a triangleABC is acute-angled then the radii of circumcircles
for the triangles ABH, BCH and CAH, where H is the orthocenter,
are equal.
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Suppose ∠C ≥ 90◦ and AC > BC. Let us choose a point D on the side
AC such that AD = BD. Let us also choose a point E on the side AB
such that ∠AED = ∠C (this is possible because ∠DBA = ∠A < ∠C).
By the sine theorem the radii of the circumcircles about the triangles
ADE, BDE and BDC are equal (see the �gure).
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Fig. 15

Suppose ∠C ≥ 90◦ and AC = BC. Let us show that the triangle
ABC cannot be cut in the required manner. If the cutting is done from
an internal point then the circumradii of the resulting triangles can
only be equal if this point is the orthocenter, which is impossible. If,
alternatively, the triangle is cut by a chevian into two triangles, then
one of those which is further cut by a second chevian has to be isosceles.
Therefore, the �rst cut needs to be done by segment CD, where AD =
AC. But then for any cutting of the triangleACD from the vertexA, the
circumradii of the resulting triangles will be less then the circumradius
of the triangle BCD (see the �gure).
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18. (B.Frenkin) Find the locus of the vertices of the triangles with a given
orthocenter and circumcenter.

Solution. Let O be the circumcenter of the triangle ABC, H be the
orthocenter, C0 be the midpoint of the side AB. Then ~CH = 2 ~OC0,
and since C0 lies within the circumcircle, CH < 2OC. The points
satisfying this condition lie outside the circle, diametrically opposite
points of which are the point M (dividing the segment OH in ratio of
1 : 2 and being the center of mass of the triangle) and the point M ′

symmetrical to H with respect to O. For such points C the required
triangle is constructed in the following way: for the point C0, take the
image of C under homothety with the center M and the ratio of −1/2.
Then draw a line through C0 that is perpendicular to CH. Now �nd
the points A, B which are the meet points of this line and the circle
with center O and radius OC. However, this construction can lead to a
degenerated triangle, the vertices A, B, C of which are collinear. This
happens when ∠OC0C = ∠MCH = 90◦, i.e. the point C belongs to
the circle with diameter MH. However point H is an exception. For it,
the required triangle exists. It can be any right triangle with hypotenuse
equal to the diameter of the circle with the center O and radius OH.
Thereby the required locus is the outer area of the circle with diameter
MM ′ excluding the circle with diameter MH but including the point
H. So, the locus in question is the outer area of the circle with diameter
ofMM ′ excluding the circle with diameterMH but including the point
H (see the �gure).
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19. (V.Protasov) Into angle A equal to α, a circle is inscribed that is tangent
to its sides at points B and C. The line tangent to the circle at some
pointM intersects the segmentsAB andAC at points P andQ respectively.
At what minimal α the inequality SPAQ < SBMC is possible?

Solution. Denote by I the incenter of the triangle PAQ. We have
∠MCB = ∠MBP = 1

2 ∠MPA = ∠IPQ. Similarly, ∠MBC =

∠IQP . Therefore, 4IPQ ∼ 4MCB, hence
SIPQ
SMCB

=
(
x
a

)2
, where

x = PQ, a = CB. On the other hand, the ratio
SPAQ
SIPQ

equals the ratio

of the perimeter of the triangle PAQ to the side PQ, i.e., equals 2b
x ,

where b = AB = AC (because the perimeter of the triangle PAQ
equals 2b). By multiplying the two ratios we obtain

SPAQ
SMCB

= 2bx
a2 . The

ratio
SPAQ
SMCB

is minimal when the length of segment x = PQ is minimal.

Let us show that the minimal length of PQ is attained when 4APQ
is isosceles. Let O be the center of the circle inscribed into ∠A; R be
its radius; M be the midpoint of the arc BC; M ′ be another point
on this arc; PQ and P ′Q′ be the respective tangent segments between
the sides of the angle. Assume β = ∠BOP (= ∠POM = ∠MOQ =
∠COQ), γ = ∠BOP ′(= ∠P ′OM ′), δ = ∠COQ′(= ∠Q′OM ′). Then
PQ = PM +MQ = 2Rtgβ, P ′Q′ = P ′M ′ +M ′Q′ = R(tgγ + tgδ).
As 2β = γ + δ and the tangent function is convex downwards at the
interval (0; π/2), we have PQ < P ′Q′ as required.

Thus, it su�ces to consider the case when 4APQ is isosceles. Then

a = 2b sin α
2 ; AM = AO − OM = b

(
1

cos α2
− tgα2

)
; PQ = 2AMtgα2 =
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2b
sin α

2

1+sin α
2
. Substituting the resulting expressions in the ineqality 2bx

a2 < 1 ,

we obtain:

α > 2 arcsin

√
5− 1

2
.

20. (D.Schnoll) The base of the pyramid is a regular triangle with side 1.
Two of three angles at the apex of the pyramid are right. Find the
maximal volume of the pyramid.

Solution. Let ABC be the base of the pyramid, while the sides AC,
BC are visible from the apex at right angles. Then S belongs to the
intersection of spheres with diameters AC and BC, i.e. to the circle
lying in the plane perpendicular to the base, with diameter CD, where
D is the midpoint of AB. The maximal volume is attained when S is
the point of this circle, the most remote from the plane ABC. Then the
altitude of the pyramid equals CD/2, whereas its volume is 1/16.

21. (N.Dolbilin) There are three pipes on the plane (equal circular cylinders,
4 meters in circumference). Two of them are lying parallel, tangent to
each other at common generatrix, and thus creating a tunnel above the
plane. The third one, perpendicular to the �rst two, cuts out a chamber
in the tunnel. Find the area of the border surface of this chamber.

Answer. 8/π.

Solution one. The horizontal cross-sections of the chamber are rectangles
with perimeters equal to doubled diameter of the pipes. For each of
these rectangles the angle between its plane and the tangent to the
chamber surface is the same for all points. The midpoints of sides of
these rectangles form quarters of pipes' circles when the cross-section
moves. Hence the surface area of the chamber is equal to the surface
area of a tetrahedron, the sides of which are isosceles triangles with the
base equal to the diameter of the pipe and the altitude equal to the
quarter of the circumference of the pipe.

Solution two. Let us call the tangent cylinders lengthwise, and the one
perpendicular to them � lateral. It is obvious that the plane, tangent
to both cylinders along their common generatrix and the vertical plane
passing through the axis of the lateral cylinder, are the symmetry planes
of the chamber that split it into four equal parts. Let us consider one
of these quarters. Its surface contains two parts: the part of the surface
of the lengthwise cylinder lying within the half of the lateral cylinder,
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and the part of the surface of the lateral cylinder lying between the
lengthwise one and the vertical plane tangent to it. The line of cylinders'
intersection is an ellipse which lies in a vertical plane. The cylinders
map one into another under the symmetry about this plane. Under
this symmetry the image of the part of chamber's surface lying on the
lengthwise cylinder supplements the part of chamberâ�TMs surface lying
on the lateral cylinder, up to a curvilinear rectangle. Its sides are equal to
half of the diameter and the quarter of the circumference of the cylinder.
Accordingly, the area of the chamber's surface equals the quadrupled
area of such rectangle.
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