
Second olympiad, year 2006

Final round. Solutions

Grade 8

8.1.(I.Yashchenko) Inscribe a regular triangle of the maximum perimeter into a given
half-circle.

Solution. It is evident that there are two ways to inscribe a triangle into a half-
circle: either two vertices of the triangle belong to the arch while the third belongs to the
half-circle’s diameter, or, vice-versa, two vertices belong to the diameter while the third
belongs to the arch. Consider the first case. Suppose the vertices A, B lie on the arch.
Then the perpendicular bisector to AB passes through the center of the half-circle. It
follows that the third vertex coincides with the center and the side of the triangle equals
the radius of the half-circle. (Fig. 8.1.1).
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Fig. 8.1.1

In the second case, the altitude of the triangle does not exceed the radius of the half-
circle. Specifically, in the case shown on Fig. 8.1.2 the equation holds. It follows that
this triangle will be the one required.

Fig. 8.1.2
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8.2. (B.Frenkin) At what minimum n there exists an n-gon, that can be cut into a
triangle, a quadrilateral, ,. . . , a 2006-gon?

Solution. Answer: n = 3. Fig. 8.2 suggests that at any n ≥ 3 a triangle can be
cut into an n-gon and a (n + 1)-gon. So, it is possible, first, to cut a triangle into 1002
triangles with the rays from the same vertex, and then to cut the first of those triangles
into a triangle and quadrilateral, the second – into a pentagon and a hexagon, . . . , while
the last one – into a 2005-gon and a 2006-gon.

Fig. 8.2

8.3. (V.Protasov) Consider a parallelogram ABCD. Two circles with centers at ver-
tices A and C pass through D. The line ` passes through D and has the secondary
intersection with circles at points X, Y . Prove that BX = BY .

Solution. Let us consider for instance the case shown in the Fig. 8.3. We have
AX = AD = BC and CY = CD = AB. Furthermore 6 BCY = 6 C − 6 DCY =
6 C − (π − 26 CDY ) = 26 CDY − 6 D = 6 CDY − 6 ADX, 6 BAX = 6 DAX − 6 A =
π − 26 ADX − 6 A = 6 D − 26 ADX = 6 CDY − 6 ADX. Thus the triangles ABX and
CY B are equal, which implies the desired equation. The other cases of location for X
and Y are considered similarly.
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Fig. 8.3

8.4. (A.Zaslavsky) Two equal circles intersect at A and B. Point P that is distinct
from A and B belongs to one of the circles, whereas points X, Y are secondary points of
intersection of lines PA, PB with the other circle. Prove that the line containing P and
perpendicular to AB splits one of the arcs XY into two equal arcs.

Solution. Consider the case when the point P lies within the second circle (Fig. 8.4).
Suppose Q is its meet point with the line passing through P and perpendicular to AB,
which lies outside the first circle. Then 6 QPX = (^ QX+ ^ AP )/2, 6 QPY = (^
QY+ ^ BP )/2. However (^ AP− ^ BP )/2 = 6 PBA − 6 PAB = 6 QPX − 6 QPY ,
therefore the arcs QX and QY are equal. The other cases are considered similarly.

<

;

43

%

$

Fig. 8.4

8.5. (V.Gurovits, B.Frenkin) Does there exist a convex polygonin such that every its
side is equal to some diagonal, whereas every diagonal is equal to some of the sides?

Solution. Answer: no. Let us assume the contrary and let AB be the longest side of
the polygon, whereas CD be its shortest diagonal (AB and CD might share one common
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endpoint). Let E be the vertex lying on the other side of CD than A and B(Fig. 8.5).
Then, since AE ≤ AB and BE ≤ AB, we have 6 AEB ≥ 60◦. On the other hand, since
CE ≥ CD and DE ≥ CD, we have 6 CED ≤ 60◦. But 6 CED > 6 AEB, a contradiction.
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Fig. 8.5

8.6. (M.Volchkevich) Consider a triangle ABC and a point P inside it. A′, B′, C ′ are
the projections of P to the lines BC, CA, AB. Prove that the circumcenter of A′B′C ′

lies inside the triangle ABC.
Solution. Let A1, B1, C1 be the points symmetrical to P about BC, CA, AB. Since

CA1 = CP = CB1, the perpendicular bisector to the segment A1B1 coincides with the
bisector of angle A1CB1. Since 6 A1CB1 = 2 6 ACB, this bisector lies inside angle ACB
(Fig. 8.6). Similarly, the perpendicular bisectors to segments A1C1 and B1C1 are inside
the respective angles of triangle ABC. Therefore, the circumcenter Q of the triangle
A1B1C1 lies inside the triangle ABC. Since the triangle A′B′C ′ is obtained from the
triangle A1B1C1 by homothety with center P and factor 1

2
, the circumcenter of A′B′C ′

coincides with the midpoint of PQ and, therefore, lies inside ABC.
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Fig. 8.6

Grade 9

9.1. (V.Protasov) Consider a circle with radius R. Two other circles with the sum
of radii also equal to R touch the first circle internally. Prove that the line linking the
tangent points passes through one of the common points of these circles.

Solution. Let O be the center of the outer circle, O1, O2 be the centers of the inner
circles, A, B be the tangent points. Draw a line through O1 parallel to OB, and a line
through O2 parallel to OA. By Thales theorem these lines meet at some point C of the
segment AB. Furthermore O1C = O1A and O2C = O2B, therefore point C belongs to
both inner circles (Fig. 9.1).
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Fig. 9.1

9.2. (V.Protasov) Given a circle, a point A on it and a point M inside it. Consider
chords BC passing through M . Prove that the circles passing through midpoints of all
triangles ABC, are tangent to some fixed circle.

Solution. Let O be the center of the given circle, O′ be the center of the circle passing
through the midpoints of sides of ABC, and P be the center of mass of the triangle ABC.
Since its vertices map into midpoints of its sides under homothety with center P and
factor −1

2
, point P lies on the segment OO′ and splits it as 2 : 1. Moreover, since the set

of midpoints of the chords passing through M is a circle with diameter of OM , the set of
mass centers of triangles ABC also is a circle obtained from it by homothety with center
A and factor 2

3
. Therefore the set of points O′ is also a circle (Fig. 9.2).
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Fig. 9.2
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Since the radii of all circles passing through midpoints of ABC sides are equal to half-
radius of the given circle, all of these circles touch two circles concentric with the circle
containig points O′ (if point M coincides with O, then one of these circles degenerates to
a point).

9.3. (A.Akopyan) Triangles ABC and A1B1C1 are similar, and oriented differently. A
point A′ is chosen on the segment AA1, such that AA′/A1A

′ = BC/B1C1. Similarly we
construct B′ and C ′. Prove that A′, B′ and C ′ are collinear.

Solution. The similarity that maps ABC into A1B1C1 can be represented as a com-
position of symmetry about the line l and homothety with the center at certain point
belonging to l and the factor k equal to the ratio of the respective sides of triangles. The
segments AA1, BB1, CC1 are obviously split in the ratio of k by l, i.e. the points A′, B′,
C ′ belong to l.

9.4. (S.Markelov) In a non-convex hexagon each angle is equal either 90 or 270 degrees.
Is it true that for certain lengths of its sides the given hexagon can be cut into a pair of
non-equal hexagons similar to the given hexagon?

Solution. Assume t is the root of equation t4 + t2 = 1. Consider the hexagon
ABCDEF where AB : BC = BC : CD = CD : AF = AF : FE = FE : ED = 1

t
and

cut it as is shown in Fig. 9.4. Then the resulting hexagons will be similar to ABCDEF
with factors t and t2.
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Fig. 9.4

9.5. (A.Zaslavsky) The line passing through the circumcenter and the orthocenter of
a non-regular triangle ABC splits its perimeter and its area at the same ratio. Find it.

Solution. Answer: 1 : 1.
First, let us prove that the line splits the perimeter and the area of the triangle in the

same ratio if and only if this line passes through the incenter of the triangle. In fact, let
the line cross the sides AC, BC at X and Y , and cross the bisector of angle C at J ; let d1
be the distance from J to the side AB, let d2 be the distance from J to two other sides.
Then 2SCXY = (CX + CY )d2, 2SAXY B = (AX + BY )d2 + AB · d1, and the ratios are
equal if and only if d2 = d1, i.e. if J is the incenter.

Now let the circumcenter O, incenter I and orthocenter H be collinear. No more than
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one vertex of the triangle belongs to this line. Assume it does not contain vertices A
and B. Since AI, BI are bisectors of angles HAO and HBO, we obtain that AH/AO =
HI/IO = BH/BO. Since AO = BO, AH = BH, i.e. the triangle ABC is isosceles and
the ratio in question equals 1 : 1.

9.6. (Ya.Ganin, F.Rideau) Consider a convex quadrilateral ABCD. Let A′, B′, C ′, D′

be the orthocenters of triangles BCD, CDA, DAB, ABC. Prove that in quadrilaterals
ABCD and A′B′C ′D′ the respective diagonals are split by the intersection points at one
and the same ratio.

Solution. Let us make use of the following statement.
Suppose KLMN be a convex quadrilateral; points X, Y split the segments KL and

NM at the ratio of α; points U , V split the segments LM and KN at the ratio of β.
Then the intersection point of segments XY and UV splits the third one at the ratio of
β, whereas the second one at the ratio of α (Fig. 9.6)
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Fig. 9.6

It is not difficult to obtain the proof of this statement using method of masses.
Assume now that A1, B1, C1, D1 are the mass centers of triangles BCD, CDA, DAB,

ABC; let A2, B2, C2, D2 be their circumcenters. The quadrilateral A1B1C1D1 is homo-
thetic to the quadrilateral ABCD about its mass center with ratio of −1

3
. Therefore the

respective diagonals of these quadrilaterals are split by the points of intersection in the
same ratios. Let us prove that diagonals of the quadrilateral A2B2C2D2 are split by the
point of intersection in the same ratios.

Let P be the point of intersection of diagonals in the quadrilateral ABCD. Then

AP

CP
=
AP

BP

BP

CP
=

sin 6 ABD sin 6 ACB

sin 6 BAC sin 6 CBD
.
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Since the sides and the diagonals of the quadrilateral A2B2C2D2 are perpendicular to
the sides and the diagonals of the quadrilateral ABCD (for instance, the points A2, B2

belong to the perpendicular bisector to CD), diagonal A2C2 is split in the same ratio.
Now, let P1, P2 be the points of intersection for diagonals of quadrilaterals A1B1C1D1,

A2B2C2D2; let P ′ be the point of segment A′C ′, splitting it at the ratio of A2P2/P2C2.
Since the points A1, C1 belong to the segments A′A2, C

′C2 and split them at the ratio of
2 : 1,it follows from the above statement that the point P1 also splits the segment P ′P2

at the ratio of 2 : 1. Considering the analogous point of the segment B′D′, we obtain the
same result. This implies that P ′ is the point of intersection of diagonals in quadrilateral
A′B′C ′D′ and splits the diagonals at the same ratio as in the quadrilaterals A1B1C1D1,
A2B2C2D2 and ABCD.

Grade 10

10.1. (Hiacinthos) Five lines meet at the same point. Prove that there is a closed
five-segment line for which the vertices and midpoints of edges lie on the these lines and
there is strictly one vertex on each line.

Solution. Let O be the point of intersection for the lines. Let us choose point A1 on
the line l1 and find point A2 on the line l3 such that the midpoint B of segment A1A2

belongs to the line l2 (Fig. 10.1). Applying sine theorem to triangles OA1B and OA2B,

we obtain that OA2

OA1
= sin 6 A1OB

sin 6 A2OB
.
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Fig. 10.1

Similarly, for the point A2 let us choose point A3 on the line l5 such that the midpoint
of A2A3 belongs to l4 and so on. By multiplying the resulting ratios we obtain that A6

coincides with A1.
10.2. (A.Zaslavsky) Projections of the point X to the sides of the quadrilateral ABCD

belong to the same circle. Let Y be the point symmetrical to X about the center of this
circle. Prove that the projections of the point B to the lines AX, XC, CY , Y A also
belong to the same circle.
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Solution. Let us consider the case when X is within ABCD, the others are similar.
Let K, L, M , N be the projections of X to AB, BC, CD, DA; let K ′, L′, M ′, N ′ be the
points symmetrical to X about these lines. Since K, L, M , N are concyclic, points K ′,
L′, M ′, N ′ are concyclic too. Since BK ′ = BX = BL′, the perpendicular bisector to the
segment K ′L′ passes through B and is the bisector of angle K ′BL′, i.e. it is symmetrical
to BX about the bisector of the angle B. So, the four lines symmetrical to the lines
linking X with the vertices of ABCD, about the bisectors of respective angles, meet at
the same point X ′, which is the circumcenter of the quadrilateral K ′L′M ′N ′. Furthermore
the center of the circle KLMN will be at the midpoint of segment XX ′, and therefore X ′

coincides with Y . Further on, as the quadrilaterals XKBL, XLCM , XMDN , XNAK
are inscribed, we have 6 AXB + 6 CXD = 6 KXA + 6 KXB + 6 CXM + 6 DXM =
6 KNA+ 6 BLK + 6 CLM + 6 MND = (π − 6 KLM) + (π − 6 MNK) = π. This implies
that the lines XB and DX are symmetrical about the bisector of angle AXC. Similarly
the lines Y B and DY are symmetrical about the bisector of angle AY C. In addition, as
demonstrated before, the bisectors of angles BAD and XAY , BCD and XCY coincide.
Hence the lines symmetrical to BA, BX, BC, BY about the bisectors of respective angles
of AXCY intersect at point D. Therefore, following the argument from the beginning of
this solution we obtain the problem statement. (Fig. 10.2).
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Fig. 10.2

10.3. (P.Kozhevnikov) Consider a circle and a point P inside it, distinct from its center.
Consider also pairs of circles tangent to the given circle from the inside and tangent to
each other at the point P . Find the locus of the meet points for the common external
tangents of these circles.
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Solution. Let X be the point of intersection for the tangent lines. Let us draw a circle
with center X and radius XP and consider the inversion about it. The circles tangent at
point P will map into one another, as they are tangent to the circle of inversion and two
lines mapping into themselves. Therefore the initial circle will map into itself. It means
that the circle of inversion is orthogonal to the given one, i.e. the tangent from X to the
given circle is equal to XP , and X belongs to the radical axis of the point P and the
given circle. Clearly, any point of the radical line can be obtained in the same manner,
i.e. the locus in question coincides with the radical axis of point P and the given circle.

10.4. (A.Zaslavsky) The lines containing the medians of triangle ABC have secondary
intersections with its circumcircle at points A1, B1, C1. The lines passing through A, B,
C and parallel to the opposite sides intersect the circumcircle at A2, B2, C2. Prove that
the lines A1A2, B1B2, C1C2 concur.

Solution (M.Ilyukhina). Let A′ be the point of intersection for the lines tangent
to the circumcircle ω at points B and C (similarly let us denote points B′ and C ′). As
is known, the line AA′ is a symmedian of the triangle ABC (i.e. the line symmetrical to
AA1 about the bisector of angle A). Let the line AA′ have a secondary intersection with
ω at point A0. Then 6 A1AB = 6 A0AC, and therefore the arcs BA1 and CA0 are equal.

Since the triangle A′BC is isosceles and ω is its excircle, then the arcs BA1 and CA0

are symmetrical about the bisector ` of the angle BA′C. The equality of the arcs implies
that under this symmetry the points A1 and A0 map into one another. Note that ` is the
perpendicular bisector to BC, therefore A under this symmetry is mapped to A2 (Fig.
10.4), hence the line A1A2 maps into the line AA′. So, since the lines AA′, BB′, CC ′

intersect at the same point L as symmedians of triangle ABC, the lines A1A2, B1B2, C1C2

also intersect at the same point that is isogonally adjoint L about the triangle A′B′C ′.
The case when either of the points A′, B′, C ′ does not exist is considered similarly.
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Fig. 10.4

10.5. (S.Markelov) Can an unfolding of a tetrahedron to the plane occur to be a
triangle with sides 3, 4 and 5 (The tetrahedron can be cut along the edges only)?
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Solution. Answer: yes, it can. For instance, a tetrahedron can be constructed out of
the unfolding shown in Fig. 10.5 (the lesser cathetus is split into three equal parts, while
the hypotenuse is split at the ratio of 4 : 1). It is easily seen that each of the three angles,
into which the lesser angle of the triangle is divided, is less than the sum of the remaining
two; therefore such unfolding is indeed suitable to form a tetrahedron.

Fig. 10.5

10.6. (A.Zaslavsky) A quadrilateral was drawn on a board, both inscribed and circum-
scribed. The centers of the respective circles have been marked as well as the point of
intersection of the lines linking the midpoints of the opposite sides. Then the quadrilat-
eral itself was erased. Restore the quadrilateral in question by means of a compass and a
ruler.

Solution. The construction is based on two lemmas.
1. The diagonals of all quadrilaterals inscribed in the given circle with center O and

circumscribed about the given circle with center I intersect at the same point L belonging
to the extension of the segment OI beyond the point I.

2. The center of incircle of the quadrilateral lies on the line linking the midpoints of
its diagonals (Monge theorem).

Let us also note that in any quadrilateral the point of intersection of the lines linking
the midpoints of opposite sides is also the midpoint of the segment linking the midpoints
of its diagonals (point M).

It follows from lemma 1 that the midpoints of diagonals of the required quadrilateral
belong to the circle with diameter OL. From this and from lemma 2 we obtain that the
point M lies on the circle in which I and the midpoint of OL are diametrically opposite
points. Therefore, drawing the line through M that is perpendicular to IM and finding
its intersection with OI, we obtain the midpoint of OL and hence the point L itself.
Furthermore, drawing the circle with diameter of OL and finding its points of intersection
with the line MI, we obtain the midpoints of quadrilateral’s diagonals. Moreover by
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considering the quadrilateral, two vertices of which lie on the line OI, it is easily seen
that for the third vertex X the line XI is the bisector of angle OXL (Fig. 10.6). This
enables us to restore the circumcircle of the quadrilateral and find its vertices as the points
of intersection of this circle with the diagonals.
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Fig. 10.6
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