
The �rst Olympiad, 2005

Correspondence round. Solutions

1. (A.Zaslavsky) The circle chords AC and BD intersect at point P . Perpendiculars to AC
and BD at points C and D respectively intersect at point Q. Prove that the lines AB and PQ
are perpendicular.

Solution. Let the perpendiculars intersect inside the circle (the case when the meet point
is outside the circle is considered similarly). Denote by R the second intersection of line DQ
with the circle.
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The quadrilateral PDCQ is inscribed in the circle (it is formed by two right-angled triangles
sharing the common hypotenuse PQ). Therefore ∠CDQ = ∠CPQ as they are subtended by
the same circle arc. For the same reason ∠CDQ = ∠CDR = ∠CAR, so lines PQ and AR
are parallel (the corresponding angles are equal). Since BR is a diameter as follows from the
problem statement, ∠BAR = 90◦.

2. (L.Yemelyanov) Cut the cross composed of �ve equal squares into three polygons of equal
area and perimeter.

Solution. Here are some of the possible ways to cut as required:
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( Arthur Darbinyan, city of Yerevan, physic-mathematical school of Yerevan)

( Igor Borodulin, city of Yekaterinburg, gymnasium no. 9 )

( Aleksander Makarets, Kharkov, physic-mathematical school no. 27 )
3. (V.Protasov) A circle and a pointK inside it are given. An arbitrary circle of the same size
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passes through point K and shares a chord with the initial circle. Find the locus of midpoints
of such chords.

Solution. The locus of interest will be the circle with the midpoint of OK as its center
(where O is the center of the initial circle) and R

2
as its radius (where R is the radius of the

initial circle).
Method one. Indeed, let PQ be the common chord, M its midpoint, whereas O1 be the

center of an arbitrarily chosen circle. As it follows from the problem statement, OPO1Q is a
rhombus, so M will also be the midpoint of OO1. Midline MM1 of triangle KO1 equals half
of KO1, i.e. half of the radius. Therefore, all midpoints of the chords lie on the circle with the
midpoint of OK as its center and R

2
as its radius (see the �gure).
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Testing that any point of the resulting circle is the midpoint of one of the chords is
straightforward.

Method two. Centers of the circles equal to the initial circle and passing through point K
lie on the circle having K as its center and R as its radius. If O1 is the center of some circle
of that kind, then as noted before M being the midpoint of the common chord will also be
the midpoint of OO1. Therefore the locus of interest is the image of the circle formed by the
centers, under homothety centered at point O and with factor of 1

2
(see the �gure).
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4. (B.Frenkin) For what minimal n there exists a convex n-gon with equal sines of all angles
and unequal lengths of all sides?

Solution. The minimal value equals �ve. Obviously, there are no triangles with the property
in question. Let us show that there are no quadrilaterals with this property either. This can be
done in various ways. For example, as sines of angles are equal, the angles themselves are equal
either to φ or 180◦ − φ for a �xed φ.

Simple listing easily shows that we deal either with a parallelogram or with an isosceles
trapezium. Alternatively, we may use ¾area method¿ for the proof. Consider a convex quadrilateral
with equal sines of all its angles. Let us denote lengths of its sides as a, b, c ,d. We then calculate
its area using formula ¾half-product of two sides multiplied by the sine of the angle between
them¿ in two ways. In the resulting equation we cancel out half of the sine and arrive at equality
ab+ cd = ad+ bc or (a− c)(b− d) = 0. It follows that at least two sides are equal.

In order to construct a pentagon with the properties in question it is su�cient to cut away
a small triangle from the larger base of an equilateral trapezium with an angle of 60◦ (see the
�gure).
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Otherwise, one can use a regular pentagon with angles of 108◦ to construct another pentagon
with the sides respectively parallel to the sides of the regular pentagon but unequal between
themselves (see the �gure).

���

5. (A.Myakishev) Two parallel lines p1 and p2 are given. Points A and B belong to p1, point
C belongs to p2. We move the segment BC parallel to itself and consider all triangles ABC
produced in this manner. In these triangles, �nd the locus of points that are: a) intersections
of altitudes; b) intersections of medians; c) circumcenters.

Solution. In all cases the resulting locus is a line with a punctured point which corresponds
to the case when the triangle degenerates into a segment (see the �gure).
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In the �rst case, evidently, we have the line perpendicular to BC and passing through vertex
A. In the second case, the answer is the line parallel to the lines from the problem condition,
which splits the segment connecting the given lines, as 1 : 2 counting from the �rst line. Indeed,
the segment BC moves with constant speed, so this is true for its midpoint. The point of
medians intersection divides the segment linking vertex with the midpoint of BC in constant
ratio of 2 : 1 and therefore this point also moves with constant speed along some straight line.
In the limit case we get point M0 that splits the segment AC0 (equal and parallel to BC, but
passing through vertex A) in 1 : 2 ratio. This is due to the fact that it should split the segment
between A and the midpoint of AC0 in ratio of 2 : 1.

Our argument can follow a di�erent path: let us draw a perpendicular to the given lines
through A1, the midpoint of BC, with the endpoints on these lines. We get a pair of equal
triangles that share a vertex A1. This implies that the midpoints lie on the line p1, equidistant
from the given lines. Next, we draw a perpendicular through M with endpoints on p1 and m.
We get a pair of similar triangles with common vertex and with the similarity ratio of 2. It
means that the centers of mass lie on the line parallel to p1 and m, which splits the common
perpendicular in ratio of 2 : 1. And so on (see the �gure).
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Finally, as the perpendicular bisectors to AC and BC also move at constant speeds, their
intersection point (the circumcenter) moves along a line as well. Observe that this very line is
the perpendicular bisector to AK, symmetrical to AC0 (to which the triangle degenerates when
point A coincides with point B) about the perpendicular from vertex A.

It is well-known that if a circle can be circumscribed about a trapezium then the latter is
isosceles. Immediate consequence is that all the circles circumscribed about triangles AB′C ′ will
have the second intersection with line p2 at the same point K, so that AK = BC. Therefore
the centers of these circles must be equidistant from points A and K (see the �gure). This
reasoning gives us another method of proof that the required locus is a line (with a punctured
point).
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6. (A.Khachaturyan) The side AB of the triangle ABC has been divided into n equal parts
(with points of division B0 = A, B1, B2, . . . , Bn = B), while the side AC of this triangle has
been divided into (n+ 1) equal parts (with points of division C0 = A, C1, C2, . . . , Cn+1 = C).
Triangles CiBiCi+1 were colored. What part of the triangle area has been colored?

Solution. Let us show that the colored area equals exactly the half of the total triangle
area. For this, drop perpendiculars to side AC from points B1, . . . , Bn. These perpendiculars
are altitudes of triangles CiBiCi+1 with equal bases. As follows from similarity considerations,
hi = ih1. Hence the same ratio connects the areas of the colored triangles: Si = iS1. (At the
�gure the case n = 4 is shown.)
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By dropping perpendiculars from points C1, . . . , Cn to the side AC and arguing as above we
obtain the same ratio for the areas of non-colored triangles. As a �nal observation, the area of
the �rst colored triangle equals the area of the �rst non-colored one (their bases are equal, while
the altitude h1 is common). We could end the proof di�erently by mere adding the areas of the

colored triangles: S ′ = S1(1 + 2 + · · · + n) = n(n+1)
2

S1. But clearly S1 = 1
2
h1

AC
n+1

= 1
2
hn
n

AC
n+1

=
SABC

n(n+1)
.

Observe that the equality of areas for corresponding pairs of triangles (colored and non-
colored) can be obtained with practically no computations. The lines BiCi are parallel (by the
converse of Thales theorem). So SBi−1BiCi

= SCi−1BiCi
(they have a common base BiCi, while

the vertices are on the line parallel to the base, hence the altitude to the base is common) and
SCi−1BiCi

= SBiCiCi+1
(vertex Bi is common, while Ci−1Ci = CiCi+1 by condition).

7. (V. Protasov) Two circles with radii of 1 and 2 have common center at point O. Vertex
A of the regular triangle ABC is on the major circle, whereas the midpoint of BC is on the
minor circle. What is the possible measure of angle BOC?

Solution. This angle is equal either to 60◦ or to 120◦.
Method one. In the given con�guration the circle passing through vertices B and C of

the regular triangle (and touching its sides at these points) will also pass through the common
center of the two given circles (see the �gure).
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This implies that in the case of �upper� (as in the �gure) triangle we have ∠B1OC1 =
1
2
∠B1IC1 = 60◦, since the inscribed angle is half of the central angle. On the same reason, for

the �lower� triangle we will get ∠B1OC1 = 120◦. In order to prove the statement in question,
let us use an easily veri�able property of a regular triangle:

Let I1 be the center of the circle tangent to sides AB and AC of the regular triangle ABC
at points B and C respectively, whereas K be the midpoint of side BC. Then point K splits the
segment AI1 in ratio of 3 : 1, where I1K is equal to a half-radius of this circle (see the �gure).
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Now let us prove the main statement (see the �gure).
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Let us draw the line AO and denote by P and Q the points where it crosses the unit circle.
Points M , O1 and K divide the segment AI1 into four equal parts, each of which equals R/2,
where R is the radius of the circle tangent to sides AB and AC at B and C. We want to prove
that I1O = R. As it follows from the problem condition, the points P and O split AQ into three
equal parts. Therefore from the converse of Thales theorem we get that segments MP and KQ
are parallel. However, ∠PKQ is a right angle, as it subtends a diameter, therefore ∠MPK is
also a right angle.

The median drawn from the right angle of a right triangle equals half of the hypotenuse.
So O1P = O1M = O1K = R

2
. It remains to observe that the segment O1P is the medial line of

triangle AI1O and, therefore, equals half of I1O.
Method two. ( Osechkina Maria, city of Perm, Physics and Mathematics School no. 91 )

Consider the case, for instance, when the points O and A belong to the same half-pane relative
to line BC (see the �gure).

1In the sequel, we provide the names of school students who suggested solutions previously unknown to the

Jury.
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Let K be the midpoint of BC, G be the intersection of medians in triangle ABC. Let us
extend the segment OK until it crosses the major circle at point O1. By the problem condition,
BK = KC, OK = KO1, so the quadrilateral BOCO1 is a parallelogram. Furthermore, let us
note that G will also be the centroid (the point of medians intersection) for triangle AOO1

since AK is a median of this triangle and AG : GK = 2 : 1. So, since the triangle is isosceles,
the median OG is also a bisector. Therefore triangles AGO and O1GO are equal. It follows
that GA = GO1 = GB = GC, which means that the points A, B, C, O1 are concyclic, so
∠BO1C = 180◦ − ∠BAC = 60◦. Considering the second case similarly we arrive at 60◦.

Method three ( Lysov Mikhail, city of Moscow, Lyceum �The second school�). This is
perhaps the most elegant solution. It is based on the following classical theorem of elementary
geometry:

Consider some segment AB on the plane and some positive number λ. Then the locus of
points X such that AX

BX
= λ, will be a circle. If P and Q are the points splitting the segment

AB at a ratio of λ (internally and externally), then this circle is based on PQ as a diameter.
It is called the circle of Apollonius (see the �gure).

12



*

&%

$

2

.

Since it directly follows from the problem condition that AG/KG = AB/KB = AC/KC =
AO/KO = 2, the points B, G, O, C belong to Apollonius circle for the segment AK, and
λ = 2. It is also clear that ∠BGC = ∠BOC (or 180◦ − ∠BOC).

8. (D. Tereshin) Three rectangles are circumscribed about a convex quadrilateral ABCD.
Two of these rectangles are squares. Is it true that the third rectangle has to be a square as
well? (A rectangle is circumscribed about a quadrilateral ABCD when there is a single vertex
of the quadrilateral on each side of the rectangle).

Solution. The third rectangle also has to be a square. The proof is based on the following
property of a square: Let the points A and C lie on a pair of opposite sides of a square, while
B and D lie on the other. Then conditions AC ⊥ BD and AC = BD are equivalent (see the
�gure).
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This is a direct consequence of congruence between the right triangles shown on the �gure.
Let us now draw a line from point A of our quadrilateral (inscribed in two squares), that is
perpendicular to BD. Mark the points of its intersection with respective sides of the square:
C1 and C2 (see the �gure).
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It follows from the above property of the square that AC1 = BD as well as AC2 = BD, i.e.
AC1 = AC2 and the points C1, C2 must concur. But the sides of two squares containing these
points have only one common point, that is C. So the perpendicular drawn coincides with AC
and therefore the diagonals of quadrilateral ABCD are equal and perpendicular. It is apparent
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that if a quadrilateral with this property is inscribed into a rectangle then the rectangle is a
square.

9. (A. Myakishev) Let O be the center of a regular triangle ABC. From arbitrary point P on
the plane the perpendiculars were dropped to the sides of the triangle or their extensions. Let
M be the intersection of medians of the triangle with vertices in the feet of the perpendiculars.
Prove that M is a midpoint of segment PO.

Solution. In terms of vectors we need to prove that 2 ~PM = ~PO. As it is known, if G is the
intersection of medians in a certain triangle ABC, then for an arbitrary point P the following
equation holds: 3 ~PG = ~PA+ ~PB+ ~PC. With this property in mind we can restate the problem
as follows:

Let there be a regular triangle ABC and an arbitrary point P . Let us consider vectors ~PA,
~PB, ~PC, as well as three vectors ~na(P ), ~nb(P ) and ~nc(P ), each of which originates from point
P and ends at the foot of the perpendicular dropped from point P to a side of the triangle. Then

2( ~na(P ) + ~nb(P ) + ~nc(P )) = ~PA+ ~PB + ~PC.
To prove this, let us consider six more vectors each of which lies on the line passing through

point P and is parallel to a side of the triangle (see the �gure).
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The origin of every such vector is at point P while the endpoint is on a certain side of the
triangle. (The �gure shows P within the triangle). The vectors linking P with vertices as well as
the vectors ending at the feet of perpendiculars can be easily expressed through these vectors.
It is so because parallel lines split the triangle into regular triangles and parallelograms. As we
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see, our statement is proved. It is also easy to ascertain that the same argument �ts the case
when P lies outside of triangle ABC.

10. (T. Yemelyanova) Cut a non-isosceles triangle into four similar triangles not all of which
are congruent.

Solution. Let AB 6= AC. Draw a segment B′C ′ such that ∠AC ′B′ = ∠ACB (see the
�gure).
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Clearly the triangles ABC and AB′C ′ are similar, at the same time B′C ′ is not parallel
to BC. Denote the midpoint of B′C ′ as M and complete triangle AB′C ′ to a parallelogram
AB′A′C ′. Then �nd the pointA1 of intersection betweenAM andBC and draw the parallelogram
AB1A1C1. The segments A1C1, B1A1 Ð¼ B1C1 make up for the cuts in question.

Note: Essentially, the above solution makes use of the so-called symmedian of the triangle,
which is the line symmetrical to the median about the corresponding angle bisector. Let us
call a parallel (to side BC) of the triangle any segment PQ with endpoints on lines AB and
AC, parallel to BC. Then clearly ∠APQ = ∠ABC and ∠AQP = ∠ACB. Let us call an
anti-parallel ( to side BC) of the triangle any segment RT with endpoints on lines AB and
AC, such that ∠ART = ∠ACB and ∠ATR = ∠ABC. (It is not di�cult to check that, in
particular, the segment formed by the feet of the respective altitudes of the triangle is an anti-
parallel). Obviously, the segment is a parallel if and only if the corresponding median splits it
in half. Since line symmetry preserves angles and lengths of segments, this statement implies
the following

Lemma: a segment is an anti-parallel if and only if the respective symmedian divides it in
half (see the �gure).
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Let us now perform the cuts in question (see the �gure).
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Assume that AB 6= AC. Let AA1 be a symmedian of the triangle, A1C1 and A1B1 be
parallels to sides AC and AB respectively. Since A1C1AB1 is a parallelogram, its diagonals are
bisected by their intersection point. In other words, the midpoint of C1B1 lies on the symmedian
and, therefore, according to the lemma, the segment C1B1 is an anti-parallel.

It can be easily tested that triangles A1B1C1, AB1C1, C1BA1 and B1A1C are similar to
triangle ABC and not all of them are congruent. (Indeed, clearly for a non-isosceles triangle
the foot of the symmedian A1 does not coincide with the midpoint of BC. It can even be shown
that BA1/CA1 = AB2/AC2 which is another interesting property of a symmedian).
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11. (L. Yemelyanov) A square has been cut into n rectangles with sides equal to ai × bi,
i = 1, . . . , n. At what minimal n all numbers in the tuple a1, . . . , an, b1 . . . , bn can occur to be
di�erent?

Solution. The minimal value is n = 5. Firstly let us show that no rectangle (speci�cally,
no square) can be cut into either 2, or 3, or 4 rectangles with di�erent sides. It is obvious that
if a rectangle is cut into 2 rectangles then they will have a common side. Let the rectangle be
cut into 3 rectangles. Then one of them contains two vertices of the initial rectangle (as three
rectangles have to cover all 4 vertices of the initial rectangle), and our task is reduced to the
preceding case (as the remaining part is a rectangle to be split in two).

Finally, let us assume that the rectangle is split into 4 others. We have two possibilities:
either one of the resulting rectangles contains two vertices of the initial rectangle (thus reducing
the task to splitting the rectangle into three parts), or each of the resulting rectangles contains 1
vertex of the initial rectangle. In the latter case let us consider 2 rectangles containing adjacent
vertices (see the �gure).
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They must be tangent (because, evidently, if there would be a gap, it could not be covered
with two rectangles containing the remaining two vertices of the initial rectangle). Let us
consider that rectangle of the remaining two, which contains point P . It cannot contain the
vertex C, therefore it contains the vertex D which means that it has a common side with the
�rst rectangle.

Now let us present one of the possible ways to cut a square into �ve di�erent rectangles (see
the �gure).
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12. (V. Smirnov) Construct a quadrilateral with the given sides a, b, c and d and the distance
l between the midpoints of the diagonals.

Solution. Let ABCD be the quadrilateral in question with AB = a, BC = b, CD = c,
DA = d, and let P , Q, R, S, X, Y be the midpoints of segments AB, BC, CD, DA, AC, BD
respectively. As QX, SY are midlines of triangles ABC and ABD, we have QX = Y S = a/2.
Similarly QY = XC = c/2. Hence by �xing points X and Y and drawing triangles XYQ and
XY S we will �nd points Q and S. Points P and R can be found similarly. By drawing the lines
parallel to QX, PX, QY , PY respectively through P , Q, R, S, we will obtain the quadrilateral
in question (see the �gure).
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13. (A.Zaslavsky) A triangle ABC and two lines l1 and l2 are given. A line parallel to l1 and
intersecting AC at point E, as well as a line parallel to l2 and intersecting BC at point F are
both drawn through an arbitrary point D. Construct the point D such that the segment EF
has minimal length.

Solution. Let P be the point of intersection for perpendiculars to AC at point E and to
BC at point F . When D moves along AB, the sides of quadrilateral DEPF maintain their
directions. Since three vertices of the quadrilateral move along straight lines, the fourth vertex
also moves along a straight line. Therefore, the midpoint of segment which is the center of the
circumcircle for triangle CEF also moves along a straight line (see the �gure). It means that all
these circles have a common chord. Thus apart from common point C they share another point
Q. Since the chord EF subtends the constant angle C, its length will be minimal provided the
radius of the circle circumscribed about EF is minimal. Among all the circles containing the
common chord, however, the minimal radius will evidently be in the circle for which this chord
CQ is a diameter.
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This implies, for instance, the following method for constructing the point D. Draw a line
parallel to l2 through A and �nd point U of its intersection with BC. Draw a line parallel to l1
through B and �nd point V of its intersection with AC. Let Q be the second intersection point
of the circumcircles for ACU and BCV , while E is the second point of intersection between
line AC and the circle with diameter CQ. Then the line parallel to l1 and passing through E
will intersect AB at the point in question.

14. (L. Yemelyanov). Let P be an arbitrary point inside triangle ABC. Denote by A1, B1 and
C1 the points of intersection of lines AP , BP and CP with sides BC, CA and AB respectively.
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Rank areas of the triangles AB1C1,A1BC1, A1B1C and denote the smallest as S1, the middle
one as S2, and the largest one as S3. Prove that

√
S1S2 ≤ S ≤

√
S2S3 , where S is the area of

triangle A1B1C1.
Solution. Method one. Let us call triangle A1B1C1 the cevian triangle of point P . It turns

out that any triangle ABC can be mapped onto some acute triangle A′B′C ′ by a suitable a�ne
transformation such that point P is mapped to its orthocenter, while the cevian triangle P is
mapped to the orthotriangle (i.e. the triangle formed by the feet of altitudes, see the �gure).
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Indeed, take an arbitrary segment B′C ′ and mark a point A′1 on it so that B′A′1/A
′
1C
′ =

BA1/A1C. Next, draw a perpendicular from this point to B′C ′. Then �nd point A0 on this
perpendicular, such that ∠B′A0C

′ = π
2
(the point of intersection of the perpendicular with the

circle based on B′C ′ as the diameter), see the �gure.
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Next, consider point A′′ on this perpendicular and drop the altitude B′B′′1 to A′′C ′. If A′′

is located close to A0, then the ratio C ′B′′1/B
′′
1A
′′ is very high. If A0 tends to in�nity along the

perpendicular, then the ratio tends to zero. By continuity argument, there is a certain point
A′ on the perpendicular, such that C ′B′′1/B

′′
1A
′ = CB1/B1A. The corresponding equality for

the third pair of ratios is guaranteed by Ceva theorem. As it is known, for any two triangles
ABC and A′B′C ′ there is a single a�ne transformation that maps the �rst triangle to the
second triangle. Since an a�ne transformation maps lines into lines and retains the ratio of
side lengths, we have found an a�ne transformation that maps the cevian triangle to some
orthotriangle.

Moreover, an a�ne transformation also retains the ratio of areas. The above implies that
it su�ces to prove the problem statement for an acute triangle and its orthocenter. Without
loss of generality we can assume that areas of triangles AB1C1, A1BC1, A1B1C are respectively
equal to S1, S2, and S3. These triangles are similar to the initial one with ratios cosA, cosB,
cosC respectively. Therefore,

S1 ≤ S2 ≤ S3 ⇔
S1

SABC
≤ S2

SABC
≤ S3

SABC
⇔ cos2A ≤ cos2B ≤ cos2C ⇔ A ≥ B ≥ C

as all angles are acute, cosines are positive and decreasing. It follows from the latter chain of
inequalities that C ≤ π

3
≤ A.

Let us now prove that
√
S1S2 ≤ S. This is equivalent to

√
S1

S
· S2

S
≤ 1. After squaring and

dividing the numerator and the denominator by S2 we get

cos2A cos2B

(1− cos2A− cos2B − cos2C)2
≤ 1.

However, it is easy to check that the following equality holds for any triangle: 1 − cos2A −
cos2B − cos2C = 2 cosA cosB cosC, therefore our inequality is equivalent to

cos2A · cos2B ≤ 4 cos2A · cos2B · cos2C ⇔ 1

4
≤ cos2C,

22



hence C ≤ π
3
. It is proved similarly that

√
S2S3 ≥ S.

Method two.

Without loss of generality, we can assume the areas of triangles AB1C1, A1BC1, A1B1C to
be respectively equal to S1, S2, and S3 (see the �gure).
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Let the point P have (relative to triangle ABC) normalized barycentric coordinates p : q : r,
i.e. p + q + r = 1. Since point P is located inside the triangle, p, q, r are positive. Let us use
them to express S1/S. Denote by A2 the point of intersection between B1C1 and AA1. Since
triangles AB1C1 and A1B1C1 share a common base, apparently S1/S = AA2/A1A2. Next, it
is clear that the coordinates of A2 are (2p : q : r) (the mass center of the system of 2pA and
(q+ r)A1 is on the line AA1, whereas the mass center of the system of (p+ q)C1 and (p+ r)B1

is on the line B1C1). Hence by the lever rule we have AA2/A1A2 = (q + r)/2p = (1− p)/2p. In
the same manner, S2/S = (1− q)/2q Ð¼ S3/S = (1− r)/2r. Since S1 ≤ S2 ≤ S3, it follows that
p ≥ q ≥ r. Considering equation p + q + r = 1 we also have p ≥ 1

3
≥ r. Let us now prove that√

S1S2 ≤ S.
Substution of the previously determined values of ratios gives (1 − p)(1 − q) ≤ 4pq, i.e.

r ≤ 3pq. However, pq
r
≥ 1

3
q
r
≥ 1

3
. In the same manner it can be proved that

√
S2S3 ≥ S (by

using inequality r ≤ 1
3
).

Note: The ideas fundamental for the above proof can be utilized without mass geometry. For
instance, one can introduce ratios α = BA1/CA1, β = CB1/AB1, γ = AC1/BC1. According
to Thales theorem (by introducing respective parallels) one then can express the ratio of areas
using those ratios.

Method three ( Avksentyev Yevgeny, city of Rostov-on-Don, Gymnasium no. 5). The
following nice solution is based on the so-called M�obius theorem:

Let P be an arbitrary point inside triangle ABC. Denote as A1, B1 and C1 the points
of intersection of lines AP , BP and CP with sides BC, CA, AB respectively. Let areas of
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triangles AB1C1, A1BC1,A1B1C and A1B1C1 be S1, S2, S3 and S respectively. Then S3 +(S1 +
S2 + S3)S

2 − 4S1S2S3 = 0.
(This is not hard to prove using for instance the ratios found in the above argumentation.)
Let us consider the function Φ(x) = x3 + (S1 + S2 + S3)x− 4S1S2S3. By M�obius theorem,

Φ(S) = 0. Moreover, it is obvious that Φ(x) is ascending at (0,∞) (as a sum of two ascending
functions). Therefore we are left to demonstrate that Φ(

√
S1S2) ≤ 0 ≤ Φ(

√
S2S3) when S1 ≤

S2 ≤ S3. However Φ(
√
S1S2) = S1S2(

√
S1S2 + S1 + S2 − 3S3), while√

S1S2 + S1 + S2 − 3S3 ≤
3

2
(S1 + S2)− 3S3 ≤ 0

(the geometric mean of two positive values does not exceed their arithmetic mean). The second
inequality is proved in the same manner.

15. (A.Zaslavsky) A circle with its center at the origin is given. Prove that there exists
a circle with a shorter radius, which contains equal or greater number of points with integer
coordinates.

Solution. Consider the rotational homothety with the center at the origin, the ratio of 1√
2

and the rotation angle of π
4
. If the squared circle radius is an even number, then all integer

points map into integer points and we get the circle in question. If the square of the radius is
an odd number, then all integer points map into centers of unit squares with vertices in integer
points, and the circle in question is obtained by translation along the vector (1

2
, 1
2
). This is

rather obvious visually: in the �gure we have the action on integer grid, by contraction �rst
and then by rotation.
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From the purely formal standpoint, the point with coordinates (x, y) maps to (x′ = x−y
2
, y′ =

x+y
2

under the above rotation and dilation. If the squared radius is an even number then x and

y are of the same parity, therefore x′, y′ are integers and x′2+y′2 = x2+y2

2
= R2/2. Alternatively,
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if the squared radius is an odd number then the parity of x and y is di�erent. As a consequence,
after the shift by the vector (1

2
, 1
2
) we will get an integer point (x y”), and (x1

2
)2 + (y 1

2
)2 = R2

2
.

16. (A.Zaslavsky, B.Frenkin) In an acute non-regular triangle 4 points were marked: the
centers of the incircle and the circumcircle, the center of mass (the intersection point of the
medians) and the orthocenter (the intersection point of the altitudes). After that, the original
triangle was erased. It turned out to be impossible to determine which point corresponded to
which center. Find the angles of the triangle.

Solution. The triangle that �ts the problem condition is an isosceles triangle with angles
at its base equal to arccos 1

4
.

Let ABC be the triangle in question, and A1, B1, C1 be the midpoints of sides BC, CA, AB
respectively. As there is a homothety of triangles ABC and A1B1C1 with the center M (with
ratio of −1

2
), and the circumcenter O for triangle ABC is the orthocenter for triangle A1B1C1,

point M lies on segment OH (H being the orthocenter of triangle ABC), and HM = 2MO
(the line containing these three centers is known as Euler line of the triangle ABC).

Therefore if point I (incenter) does not belong to the same line as three other points then
we can unambiguously determine the role of each point in the triangle ABC. Observe that this
line contains no more than one vertex of the triangle. So we can assume that points A and B
do not belong to it. As ∠OBA = ∠HBC = π

2
−∠C, line BI is the bisector of angle HBO. So,

point I lies on the segment OH, and OI = 2IH (otherwise the role of the points is determined
unambiguously). According to the property of the bisector we have BO = 2BH. Following the
same argument we will get AO = 2AH. Therefore, AH = BH = R/2, where R is the radius
of the circumcircle of ABC. Now observe that AH = 2OA1 (and these segments are parallel),
which also follows from the homothety shown at the start of the solution. In addition, it is
apparent that OA1 = R cosA. Therefore AH = 2R cosA and cosA = 1

4
. Equation cosB = 1

4
is

proved in the same way.
17. (A.Myakishev) The incircle of triangle ABC has center I and tangency points P , Q, R

with sides BC, CA and AB respectively. With a ruler only, construct the point K where the
circle passing through B and C is (internally) tangent with the incircle.

Solution. According to the well-known Steiner theorem, if in the plane there is a �xed circle
with the marked center, then it is possible to draw any �gure with a ruler alone, that could have
been constructed with ruler and compass. However, application of standard methods, not taking
into account peculiarities of the construction in question, requires a considerable number of
�steps�. Of course, it is desired to use the minimal number of lines. It turns out that just four
lines do su�ce! Firstly observe that if AB = AC then the construction is obvious (K matches
the point diametrically opposite to point P ), so let us consider the case when AB 6= AC.

Construction algorithm:
1. Draw a line BC.
2. Draw a line QR and mark point T of its intersection with line BC.
3. Mark point Pd that is diametrically opposite to point P .
4. Draw the line PdT and mark point K as the second point of intersection of this line and

the incircle. Point K is the point in question (see the �gure).
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Proof: Clearly the point T will split the segment BC in the same ratio as the point P (by
theorems of Ceva and Menelaus). Assume the circle in question has been constructed. Then
KP is the bisector of the angle BKC (by the well-known lemma of Archimedes: let the line
cross a given circle at points B and C; consider an arbitrary circle tangent to the given circle
at point K and tangent to BC at point P ; then the line KP crosses one of BC arcs at its
midpoint).

By the bisector property, BP/CP = KB/KC = λ 6= 1. Therefore the point lies on the
circle of Apollonius (see solution to the problem 7, method 3) for the segment BC with the ratio
of λ. Since PT is its diameter, ∠TKP = 90◦ or equivalently ∠PKPd = 90◦. This argument
justi�es our construction.

18. (V. Protasov) There are three lines l1, l2, l3 in the plane that form a triangle, as well as
a marked point O, the center of its circumcircle. For an arbitrary point X in the plane, let us
denote by Xi the point symmetrical to about the line li.

a) Prove that for an arbitrary point M the lines linking midpoints of segments O1O2 and
M1M2, O2O3 and M2M3, O3O1 and M3M1 concur.

b) Where can their point of intersection lie?
Solution. Method one. Let us show that these lines intersect at the point belonging

to Euler circle. (Reminder: Euler circle for a triangle ABC is the circle circumscribed about
its medial triangle, i.e. passing through midpoints of its sides. Feet of the altitudes and the
midpoints of segments linking the orthocenter with the vertices also lie on this circle.) Let
ABC be the triangle formed by lines li, let H be its orthocenter. Then the midpoints of O1O2,
O2O3, O3O1 coincide with the midpoints of segments AH, BH, CH (in the sequel, called A1,
B1, C1) and, therefore, lie on Euler circle of the triangle ABC. The sides of triangle O1O2O3 are
in fact parallel to the midlines of triangle ABC and are twice longer because they are linked
with the latter by the homothety with center O and ratio 2. Therefore, triangle O1O2O3 is
centrally symmetrical to ABC. So the line passing through C and midpoint of O1O2, is parallel
to the line passing through O3 and the midpoint of AB, i.e. coincides with an altitude of triangle
ABC, whereas H is the homothety center for ABC and A1B1C1 (see the �gure).
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Let M be an arbitrary point, whereas D be the midpoint of M1M2. Then ~DC1 = ( ~DO1 +
~DO2)/2 and, since ~M1O1 and ~M2O2 interchange under the rotation around point C by angle

2C, vector ~DC1 forms an angle equal to C with each of them. Furthermore ~M1O1 and ~M2O2

map to ~MO under the symmetry about CB and CA, respectively. Therefore ~DC1 and ~MO
form equal angles with the bisector of C (this implies also equal angles with the bisector of C1

in triangle A1B1C1), see the �gure.
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Arguing similarly for two other midpoints we conclude that the lines linking A1, B1, C1

with the midpoints of sides of triangle M1M2M3 are symmetrical about bisectors of triangle
A1B1C1 to the lines intersecting A1, B1, C1 and parallel to OM . To complete, we shall use
a classical theorem of plane geometry: a triple of lines drawn from the vertices of a triangle
concurs at a point belonging to the circumcircle of the triangle i� the lines, symmetrical to the
given lines about the bisectors of respective angles, are parallel. (A rather simple proof uses
simple calculation of angles).

According to this theorem, the triple of lines in our problem intersects on the circumcircle
of triangle A1B1C1, i.e. on Euler circle of the initial triangle.

Method two. ( Avksentiev Yevgeniy, city of Rostov-on-Don, Gymnasuim no. 5). To start
with, let ABC be the triangle formed by lines li; H be its orthocenter and A′, B′, C ′ be the feet
of altitudes dropped to BC, CA, AB respectively. Let us now give the following de�nition: Let
there be two similar shapes Ψ1 and Ψ2 as well as some similarity transformation H, mapping
one shape to another. Let us say that two shapes Φ1 and Φ2 are equally located relative to Ψ1

and Ψ2 if the transformation H also maps Φ1 into Φ2. Now let us prove that points M ′
1 (the

midpoint of M3M2) and M are equally located relative to triangles AB′C ′ and ABC (as it is
known, these triangles are similar with a ratio of 1

cosA
, and this similarity can be de�ned as a

composition of an axial symmetry about the bisector of angle A and a homothety with center
at A, see note to solution of problem 10). It su�ces to show that AM ′

1 = AM/ cosA (the
ratio of distances from the similarity center to these points equals the similarity ratio) and that
the ratio of distances from point M ′

1 to AB and AC is reversely proportional to the ratio of
distances from M to the same sides (i.e. line AM ′

1 maps into line AM under symmetry about
the bisector of angle A), see the �gure.
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Since M ′
1Q is the midline of triangle M2MM3, it is perpendicular to AB. By the same

logic M ′
1P is perpendicular to AC, therefore M ′

1 is the orthocenter of triangle APQ, and hence
AM ′

1 = 2ρ cosA, where ρ is the radius of the circumcircle of APQ (as it was shown in the
solution to problem 16). It is evident that ρ = AM ′

1/2. Equality of the inversed ratios of
distances to the sides follows from the similarity of the triangles shaded in the picture.

In the same manner we prove that M ′
2 and M are equally located relative to A′BC ′ and

ABC, while M ′
3 and M relative to A′B′C and ABC. Now, if we choose for M the point O,

the center of the circumcircle of ABC, then evidently points O′1, O
′
2, O

′
3 will be the midpoints

of segments linking orthocenter H of triangle ABC with its vertices (since the lines linking a
vertex of the triangle with H and O are symmetrical about the respective bisector: the fact we
have already encountered in the solution for problem 16; therefore, for instance, point O′1 lies
on the line AH, furthermore AO = R and AH = 2R cosA, therefore AO′1 = AH/2 and so on).
It follows from the proven equal location that the lines O′1M

′
1, O

′
2M

′
2 and O′3M

′
3 are equally

located relative to triangles AB′C ′, A′BC ′ and A′B′C (see the �gure).
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Additionally, it is evident (since respective elements of triangles map into respective ones
under similarity, and in particular circumcenters do) that the lines O′1A

′, O′2B
′ and O′3C

′ are
equally located relative to the same triangles, and all these points are located on the Euler
circle of triangle ABC. Finally, we can conclude that the angles between pairs O′1M

′
1 and O

′
1A
′,

O′2M
′
2 and O

′
2B
′, O′3M

′
3 and O

′
3C
′ are equal.

We have thus proved that the lines O′1M
′
1, O

′
2M

′
2 and O′3M

′
3 intersect in the same point

located on Euler circle of the original triangle.
19. (A. Tarasov) As is well-known, the Moon rotates around the Earth. Let us assume the

Moon and the Earth to be points. Assume also that the Moon travels a circular orbit around
the Earth and makes full circle in one month. There is an UFO in the plane of the lunar orbit.
The UFO can move in jumps over the Moon and over the Earth: from an old location (point
A) it instantly moves to the new one (point A′) so that the midpoint of A′ is either the Moon,
or the Earth. Between the jumps, the UFO is located in space motionless.

a) Determine the minimal number of jumps su�cient for the UFO to reach any random
point within lunar orbit from any another random point within lunar orbit.

b) Prove that the UFO is able, within in�nite number of jumps, to reach any random point
within lunar orbit from any another random point within lunar orbit in any period of time, for
example, in one second.

Solution. a) It is possible to reach any point within lunar orbit from any other point within
lunar orbit in two jumps. For that, the UFO needs to jump via the Moon. The �rst jump is
when the Moon is at point L1. The second jump is when the Moon is at L2. In these two
jumps the UFO will move in total along the vector 2 ~L1L2 (since the compoisition of two central
symmetries is a parallel shift by the doubled vector from the �rst center to the second one, see
the �gure).

For any two points X and Y within the orbit it is possible to �nd a chord L1L2 such that
~XY = 2 ~L1L2. This chord can be constructed, for instance, by drawing a diameter parallel to
XY , and choosing a segment on it of length XY/2, such that its midpoint is the circle center.
Then drop the perpendiculars from the endpoints of the segment. These perpendiculars will
cut o� the chord in question.
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Also it is possible to consider homotheties with centers at points X and Y and factor 2.
Images of the lunar orbit must intersect, since if the lunar orbit radius is R and the centers of
images are Ox, Oy, we have OxOy < XY + 2(XZ + Y Z) < 4R (see the �gure).

2; 2</�/�
7

=
; <

b) Let the initial location of the Moon be at L0, the �nal one at L1. Consider a pair of
jumps, via the Earth �rst and then via the Moon, as a twin jump. The UFO moves along the
vector 2 ~ZL in this case. The end of this vector, point T , will lie on a circle arc t0t1 with center
Z and radius twice as long as the radius of the Moon orbit. Let us denote such vectors simply
as ~T .

As the jump happens instantly then at any moment the UFO can make an integer number
of jumps k~T (in order to jump along the vector −~T , the UFO needs �rst to jump via the Moon
and then via the Earth). Now, in order to arrive to point Y from point X, we need to represent

the vector ~XY as a �nite sum of vectors consisting of summands ki ~Ti, ki ∈ Z, where Ti is a
certain set of points on circle arc t0t1 located consecutively one after another (see the �gure).
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First, represent ~XY as a sum ~v1 + ~v2, so that both of these vectors are perpendicular to
certain radii of our sector. This can be done assuming ~v1 = λ(~t1 − ~t0), ~v2 = ~XY − ~v1. Since ~v1
is perpendicular to the �centerline� radius for all values of λ, and ~v2 in case of increasing the
absolute value of λ tends to −~v1, the vector ~v2 for su�ciently big λ will also be perpendicular
to a certain radius. Obviously, there exist integers m1 and m2 with a rather big absolute value
as well as certain points on the circle arc T1, T2, T3, T4 located consecutively and such that
~v1 = m1( ~T2 − ~T1) and ~v2 = m2( ~T3 − ~T4). The representation in question is obtained.

20. (A.Zaslavsky) Let I be the center of the insphere of tetrahedron ABCD; A′, B′, C ′, D′

be the centers of the circumspheres of tetrahedrons IBCD, ICDA, IDBA, IABC respectively.
Prove that the circumsphere of ABCD lies entirely inside the circumsphere of A′B′C ′D′.

Solution: Let R, r be the radii of the circumscribed and inscribed spheres of ABCD; O
be the center of the circumsphere of ABCD; L be the circumcenter of triangle ABC; H be
the projection of I to the plane ABC. The problem condition implies that O and D′ lie on the
perpendicular to the plane ABC, that passes through L. Therefore the lines OD′ and IH are
parallel. Furthermore D′A = D′I (as radii of the circumsphere of IABC), OA = R, IH = r.

Let us apply the cosine law twice, to triangles AD′O and OD′I:

R2 = D′A2 +D′O2 − 2D′A ·D′O cos∠AD′O,

OI2 = D′I2 +D′O2 − 2D′I ·D′O cos∠ID′O.

Subtracting the second equation from the �rst one, we get:

R2 −OI2 = 2D′O(D′A cos∠AD′O −D′I cos∠ID′O).

So, D′O = (R2−OI2)/2r. It can be similarly proved that points A′, B′, C ′ are at the same
distance from O. Therefore spheres ABCD and A′B′C ′D′ are concentrical and D′O = ρ is the
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radius of the circumsphere of A′B′C ′D′. Let us prove that ρ > R ⇔ R2−OI2
2r

. For this, draw a
plane DOI. It intersects the circumscribed and inscribed spheres by circles with centers O, I
and radii R, r, while the tetrahedron intersects them by a certain triangle. The vertex D of
this triangle lies on the larger circle, while at least one of the two remaining vertices lies within
this circle. In addition, the smaller circle lies entirely within this triangle and within the larger
circle.

Therefore, if one draws through D chords DX1 and DY1 of the larger circle tangent to the
smaller circle, then the latter lies strictly inside triangle DX1Y1. Now �blow up� the smaller
circle, maintaining the center and increasing the radius. Continuity considerations imply that at
a certain moment the �overblown� circle (of some radius r′) will be inscribed in triangle DX ′Y ′

formed by a pair of tangential lines with vertex in D. The same triangle will be inscribed in the
bigger circle. Therefore it satis�es the classical relation which expresses the distance between
the centers of inscribed and circumscribed circles via their radii (so called Euler's formula):

OI ′ = R2 − 2Rr′.

Therefore r′ = (R2 −OI2)/2R. It is also evident that r′ > r. The problem is solved.
21. (N. Dolbilin) The planet �Tetraincognito� covered by the �ocean� has a shape of a regular

tetrahedron with an edge of 900 kilometers. What area of the ocean will be hit by a �tsunami�
after 2 hours of �tetraquake� with the epicenter at

a) the center of a face,
b) the midpoint of an edge, if tsunami propagates at a speed of 300 km/h?
Solution: a) Consider an unfolding in the shape of a regular triangle. Let us prove that

the shortest route from the center of the triangle to any its point will be a segment on this
unfolding. Let O be the center of face ABC, X be a point on face ABD, and let some route
from O to X �rst cross the edge AC. If we extend this route on the unfolding, we get to some
point on the edge AD. However there is a symmetrical way to this point via the edge AB,
which is a straightforward way to X (see the �gure).
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Therefore the area hit by tsunami will be the di�erence between the area of the disc with
radius of 600 km and the triple area of the segment (see the �gure).
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We have

cos∠POC =
OC

OP
=

900

600
√

3
=

√
3

2
,

therefore, ∠POQ = π
3
.

The area of the segment is the di�erence between the areas of the sector and the triangle:

Sseg =
1

2

π

3
6002.

Therefore the area hit by tsunami is

π · 6002 − 3

2
· 6002(

π

3
−
√

3

2
) = 180000π + 270000

√
3.

b) Considering the �double� unfolding of the tetrahedron and following the argument from
the previous part we assure that the shortest ways lie within the shaded rectangle (see the
�gure).
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The area hit by tsunami is the di�erence of the area of the disc and the double area of the
segment:

∠POA = arccos
OA

OP
= arccos

3

4
.

PQ = 2PO sin∠POA = 300
√

7.
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Sseg = 2 · 180000 arccos
3

4
− 67500

√
7.

S = π · 6002 − 720000 arccos
3

4
+ 135000

√
7 = 720000 arcsin 34 + 135000

√
7.

22. (V. Boss) Perpendiculars were dropped to the faces of a tetrahedron at their mass centers
(intersections of medians). Prove that the projections of three perpendiculars onto the fourth
face concur.

Solution. Let ABCD be the tetrahedron given, A′, B′, C ′, D′ be the centroids (centers of
mass) for the faces BCD, CDA, DAB, ABC. It turns out that the faces of the tetrahedron
formed by centroids are parallel to the respective faces of the original tetrahedron. So, for
example, the plane ABC is parallel to the plane A′B′C ′ and so on.

Indeed, let P and Q be the midpoints of AC and AB. As the centroid divides a median in the
ratio of 2 : 1, the converse of Thales theorem implies B′C ′ ‖ PQ. But PQ ‖ BC as the medial
line, therefore B′C ′ ‖ BC. In the same manner A′C ′ ‖ AC, and, by property of parallelism for
two planes, the faces are parallel. Therefore perpendiculars dropped from the points A′, B′, C ′,
D′ to the respective faces of ABCD are the altitudes of the tetrahedron A′B′C ′D′. By the three
perpendicular theorem, their projections to the plane of the face A′B′C ′ will be the altitudes
of this face and therefore concur. But then their projections on the parallel plane ABC also
concur.

23. (L. and T. Yemelyanov) Paste over a cube in one layer with �ve convex pentagons of
equal area.

Solution. For instance, this can be done if we consider the following unfolding of a cube:

24. (V. Senderov) Given a triangle with all its angles less than φ, where φ < 2π
3
. Prove that

there is a point in the space such that all sides of the triangle are visible from it at the angle
of φ.

Solution. Method one. Let ABC be the triangle in question. Construct an outward arc
on each of its sides so that the angle measure of each of these arcs equals φ. Let us show that
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the arcs BC, CA, AB contain points X, Y , Z respectively, such that AZ = AY , BZ = BX,
CX = CY . Let AC be the longest side of the triangle, AB the shortest. Choose an arbitrary
point Z on the arc AB, �nd point X on the arc BC, such that BX = BZ ( is determined
unambiguously as AB ≤ BC), and �nd point Y on the other side from B about the line
such that AY = AZ, CY = CX. For Z = B, we have AY = AB, CY = CB. Therefore,
∠AY C = ∠B < φ and Y lies outside the segment drawn on AC (see the �gure).
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In the case Z = A the point Y does not exist because AC ≥ BC. It follows that at a certain
intermediate position of the point Z, the point Y belongs to the arc AC (see the �gure).
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We are left to prove that a tetrahedron can be constructed from triangles ABC, ABZ,
BCX, ACY . I.e. at least for one vertex (A, B or C) the angle of triangle ABC is less than
the sum of the angles of two other triangles, adjacent tj the same vertex. But if this is not the
case, then ∠A + ∠B + ∠C ≥ 3π − 3φ > 3π − 2π = π, a contradiction. (We made use of a
well-known theorem of stereometry: three plane angles with a common vertex form a trihedral
angle i� either of them is smaller then the sum of the other two).

Method two (Pechonkin Nikolay, city of Moscow, school no. 192). For each of segments
AB, BC and CA let us determine the set of points in the plane, from which the segments in
question are visible at angle φ. We get 6 circle archs. For BC let this set be ωa, for AC be
ωb, and for AB be ωc. Points K, L, M are intersection points for these sets (see the �gure).
Evidently, there is a region shared by all three regions and having two circle arcs as its borders.
(For instance, the Fermat-Toricelli point from which all sides of the triangle are visible at angle
2π
3
belongs to this region).
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Obviously M , L, K lie in the regions resttricted respectively by ωa, ωb and ωc. Next, the
set of points in space, from which the segment BC is visible at angle φ is the surface obtained
by rotation of ωa about BC. Let us denote it as Fa. Similarly we obtain two other surfaces:
Fb, Fc. The intersection of Fa and Fb is a certain continuous curve passing through C and K.
Moreover, K lies within the body limited by Fc, while C is outside that body. Hence the line
of intersection between Fa and Fb will also intersect Fc.

39


