Для Учителей

На этом занятии мы на новом, тригонометрическом, языке повторяем известные уже из прошлых занятий соотношение. С одной стороны, ребята привыкают к тому, что синусы и косинусы бывают не только в прямоугольных треугольника [⊚], с другой стороны, к финалу занятия мы добираемся до формулы Герона.

Напомним классические обозначения из геометрии треугольника.

$$AB = c$$
, $BC = b$, $AC = b$, $\angle BAC = \alpha$, $\angle ABC = \beta$, $\angle ACB = \gamma$;

r — радиус вписанной окружности, r_a , r_b , r_c — радиусы вневписанных окружностей, касающихся сторон BC, AC, AB, соответственно

Докажите, следующие тождества.

- 1. $a = r(\text{ctg}(\beta/2) + \text{ctg}(\gamma/2)).$
- **2.** $a = r_a(\operatorname{tg}(\beta/2) + \operatorname{tg}(\gamma/2)).$
- **3.** $p b = r \operatorname{ctg}(\beta/2)$.
- **4.** $p b = r_a t g(\gamma/2)$.
- **5.** $p = r_a \operatorname{ctg}(\alpha/2)$.
- **6.** $rp = r_a(p a)$.
- 7. $rr_a = (p-b)(p-c)$.
- 8. $r_b r_c = p(p-a)$.
- **9.** (формула Герона) Докажите, что площадь S треугольника можно выражается через длины сторон следующим образом:

$$S^2 = p(p-a)(p-b)(p-c)$$

.

10 (MMO-2024). Дан описанный четырехугольник ABCD с тупым углом ABC. Лучи AB и DC пересекаются в точке P, а лучи DA и CB — в точке Q. Докажите, что $|AD - CD| \geqslant |r_1 - r_2|$, где r_1 и r_2 — радиусы вписанных окружностей треугольников PBC и QAB.