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Preface

Curves of second degree, or conics, are traditionally viewed as objects per-
taining to analytic geometry and are studied in lower-level courses in engi-
neering colleges. At best, only the optical properties of conics are mentioned
among their geometric properties. But those curves also possess a number
of other nice properties, a majority of which can be established by meth-
ods of elementary geometry well within the reach of high school students.
Moreover, conics help solve some geometric problems seemingly unrelated
to conics. In this book the reader will find the most interesting facts about
curves of order two, including those proved recently.

Chapter 1 deals with the elementary properties of conics. Most of the
facts mentioned there are well known. The remaining material is also rather
simple, so that the entire chapter does not impose any prerequisites on
the reader beyond the standard high school curriculum. Some simple but
important results are offered as exercises. We recommend that the reader
try to solve them before reaching for the solutions. This should facilitate the
understanding of the material later on. Chapter 2 is of an auxiliary nature.
It contains some facts from classical geometry needed for understanding
the remaining chapters, which are not usually studied in high school. In
Chapter 3 we mention projective properties common to all conics. Some
of them, such as the theorem on pencils of conics, are quite complicated.
Finally, Chapter 4 is devoted to metric properties. As a rule, they concern
only special kinds of conics. This is the most complicated chapter of the
book, which requires a good understanding of the material in the previous
chapters.

The authors are grateful to I. I. Bogdanov and E. Yu. Bun'kova for
valuable comments.

vii



Chapter 1

Elementary Properties of
Curves of Second Degree

1.1. Definitions

If you stake a goat, it will graze the grass inside the circle that is centered
at the stake and has radius the length of the rope. If you use two stakes at
the ends of the rope and tie the goat using a sliding ring, the region with
grazed grass will look like the one shown in Figure 1.1.
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FIGURE 1.1. Fj and F; are the foci; a and b are the major
and the minor axes.

&

For all points on the boundary of that figure, the sum of the distances
to the stakes equals the length of the rope. Such a curve is called an ellipse,
and the points marked by the stakes are called the foci.

Clearly, an ellipse looks like an “elongated circle”. It obviously has two
axes of symmetry. These are the line connecting the foci and the midpoint
perpendicular to the segment with endpoints at the foci. These two lines
are called the major and the minor azes of the ellipse. The lengths of their
parts inside the ellipse are called the lengths of the major and minor axes.
The distance between the foci is called the focal distance.

It is also clear that the length of the rope holding the goat equals the
length of the major axis of the elliptical boundary of the grazed region.

1



2 1. ELEMENTARY PROPERTIES OF CURVES OF SECOND DEGREE

Intuitively it is clear that the goat can graze at any point inside the
ellipse but it can never get beyond the ellipse. But a purely mathematical
reformulation of this is no longer so obvious.

Exercise 1. Prove that the sum of the distances from any point inside the
ellipse to the foci is less—and from any point outside the ellipse is greater—
than the length of the major axis.

Solution. Denote by F; and F, the foci of the ellipse, and by X a point.
Let Y be the intersection of the ray F; X and the ellipse. Assume first that
X is inside the ellipse. By the triangle inequality, F5X < XY + Y F5, and
hence 1X + XFo < X + XY +YF, = 1Y + FRY (Figure 1.2).

Y

FIGURE 1.2

But F1Y + F5Y equals the length of the rope, i.e., the major axis of
the ellipse. Using a similar argument when X is outside the ellipse, we have
Y < XY+ XF,. Therefore hX+XFy = F1Y+YX+XF, > Y +FY.

Ellipses often arise in mechanics. For example, a planet orbiting the Sun
moves along an ellipse with the Sun at one of its foci (Kepler’s Law).

An ellipse is an example of a curve of second degree or a conic. Other
examples of such curves are parabolas and hyperbolas.

A hyperbola is the set of points for which the absolute value of the differ-
ence between the distances to two fixed points, called the foci, is constant.

A hyperbola consists of two branches the ends of which approach two
lines called the asymptotes of the hyperbola (Figure 1.3). A hyperbola with
perpendicular asymptotes is said to be equilateral.

The line passing through the foci of a hyperbola is an axis of symmetry
and is called the real aris. The perpendicular line passing through the
midpoint between the foci is also an axis of symmetry and is called the
imaginary azis of the hyperbola.

If a comet is passing by the Sun and the gravitational force exerted by
the Sun is too small to keep the comet within the solar system, then its
trajectory will be an arc of a hyperbola whose focus will be at the center of
the Sun.

A parabola is the set of points whose distances to some fixed point and
line are constant. That point and line ate called, respectively, the focus and
the directriz of the parabola. The line perpendicular to the directrix and
passing through the focus is called the azis of the parabola (Figure 1.4).
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FIGURE 1.3. F; and F5 are the foci, a and b are the real and
imaginary axes, and [; and ly are the asymptotes.
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FIGURE 1.4. F is the focus; ! and !’ are the directrix and the
axis of the parabola.

Clearly, it is an axis of symmetry of the parabola.

We remark that a stone thrown at an angle to the horizon will move
along a parabola.

In a way, from the geometric point of view, there is only one parabola
(just as there is only one circle). More precisely, all the parabolas are similar,
i.e., they can be transformed into one another by rotational homotheties.

Consider a family of ellipses with focus at a fixed point and passing
through another given point. We send the other focus to infinity along some
direction. Then those ellipses will tend to a parabola with the same focus
and axis parallel to the chosen direction. A similar experiment works for
hyperbolas. Thus the parabola is a limit case of both the ellipse and the
hyperbola.

Exercise 2. State and prove, for the parabola and the hyperbola, the results
similar to the one in Exercise 1.

Solution. For the points inside the parabola the distance to the focus is less
than the distance to the directrix, and for the points outside the parabola
the opposite is true (Figure 1.5).

Let Y be the projection of X to the directrix, Z the intersection of XY
with the parabola, and F' the focus of the parabola. By the definition of the
parabola, FZ = ZY . If X lies inside the parabola, then XY = XZ + ZY.
By the triangle inequality, FX < FZ+ZX = 2ZY +ZX = XY. If X
and the parabola are on different sides of the directrix, then the assertion
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FIGURE 1.5

is obvious. Suppose X’ is outside the parabola but on the same side of
the directrix. Then Z'Y’ = Z'’X’' + X'Y’ and, by the triangle inequality,
FX'+X'Z >FZ' =2'Y' = Z'X'+ X'Y'. Therefore FX' > X'Y". O

In the case of a hyperbola the corresponding statement is as follows: let
d be the difference of the distances from any point on the hyperbola to the
foci F; and F3 and let T' be the branch of the hyperbola inside which Fj
lies. Then for the points X outside (inside) I' the quantity X F — X F7 is
less (greater) than d.

Suppose X lies inside I' and let Y be the intersection of the ray F5X and
I'. Wehave Fo X = FoY+Y X. By the triangle inequality, 1 X < 1Y +Y X
therefore Fo X — F1X > (Y +YX) - (Y +YX) = FRY - 1Y =d.

FIGURE 1.6

If X’ is outside I, let Y’ be the point of intersection of F; X’ and T.
Then F1 X' = F1Y'+Y'X’. By the triangle inequality, F5 X' < FY'+Y'X’.
Therefore R X' —Fi X' < (FRY'+Y' X —(FY'+Y'X") = BY'-RY' =d.

We remark (without a proof, for the time being) that the ellipse, the
parabola and the hyperbola have the following properties: an arbitrary line
intersects each of those curves in at most two points, and, given any point
in the plane, there are at most two tangents from that point to the curve.
These properties are obvious consequences of the results of 1.5.

Exercise 3. Find the locus of the centers of the circles tangent to two given
circles.

Solution. For the sake of definiteness, consider the case when none of the
circles with centers Oy, Oz and radii ry, r2 contains the other. If the circle
centered at O of radius r is tangent to the two circles on the outside, then
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00; = r+r; and OOy = r + rg, and therefore OO; — 002 = r; — 79,
i.e., O lies on one of the branches of the hyperbola with foci O, and O.
Similarly, if a circle is tangent to both circles on the inside, then its center
lies on the other branch of the same hyperbola. If one of the tangencies
is on the inside and the other on the outside, then the absolute value of
the difference in distances OO; and OOs is equal to r; + ro, i.e., O sweeps
another hyperbola with the same foci. Similarly, if one circle is inside the
other, then the desired locus consists of two ellipses with foci O; and Oq
and major axes r; +r2 and r; —ro. The case of intersecting circles is left to
the reader.

1.2. Analytic definition and classification of curves
of second degree

In the previous section we mentioned the fact that the ellipse, parabola, and
hyperbola are particular cases of curves of degree two. Now we make this
more precise by showing that, in a sense, there are no other curves of degree
two.

Definition. A curve of second degree is a set of points whose coordinates
in some (and therefore in any) Cartesian coordinate system satisfy a second
order equation:

(1) anz? + 2a12y + a22y2 + 2b1x + 2boy + ¢ = 0.

If the left-hand side of (1) is a product of two linear factors, then the curve
is the union of two lines (which may coincide). In that case it is said to be
degenerate. A curve which contains exactly one point (for example, z2+y? =
0) is also said to be degenerate.

It is a known result from analytic geometry (see, for example, [1]) that
for any nondegenerate curve there is a coordinate system in which its equa-
tion has a rather simple form. We now describe the main idea behind this
result.

First, rotate the coordinate system through an angle ¢. This means that,
in equation (1), the coordinates z and y should be replaced by, respectively,
zcos¢ + ysing and —zsin ¢ + y cosp. Choosing an appropriate ¢, we can
make the coefficient of zy equal to zero. Next we move the origin to (zo, %),
i.e., we replace x by z + z¢ and y by y + yo. By choosing an appropriate
pair (xo,yo) we can transform (1) into one of the three canonical forms (I),
(IT), or (III).

A direct calculation shows that the curve

2 42
(I) E§+’b—2=1, a_>_b>0,
is an ellipse centered at the origin, with foci at (£va? — b2,0) and major
and minor semi-axes (i.e., half the lengths of the corresponding axes) equal,
respectively, to a and b. In the special case a = b, ellipse (I) is a circle.
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The curve
(IT) ——-—%=1, a>0, b>0,

is a hyperbola that intersects its real axis in two points at distance 2a from
each other. The quantities a and b are called, respectively, the real and
the imaginary semi-axes of the hyperbola. The lines z/y = *a/b are the
asymptotes of the hyperbola and the points (+va? + b2,0) are the foci.
When a = b hyperbola (II) is equilateral.

If

(1) y* =2pz, p>0,

the curve is a parabola, whose axis coincides with the z-axis, the focus is at
(p/2,0), and the directrix is given by z = —p/2.
The curve ) )
x
;+%=4
is called an imaginary ellipse; it contains no real points.
Henceforth, unless stated otherwise, a curve of degree two will always

be nondegenerate and not imaginary.

Problem 1. Prove that the equation y = 1/z describes a hyperbola and
find its foci.

1.3. The optical property

As is known, if a ray of light is reflected in a mirror, then the reflection angle
equals the incidence angle. This is related to the so-called Fermat principle,
which states that the light always travels along the shortest path. We shall
now prove that the path is indeed the shortest one.

Thus we have a line [ and points Fj and F; lying on the same side of it.
We want to find a point P on the line such that the sum of the distances from
P to Fy and F» is minimal. Reflecting F» in | we have a point F}. Clearly,
F>X = F} X for any point X on [. Thus we need a point P such that the sum
of the distances from P to F; and Fj will be the smallest possible. Clearly,
the minimum is attained when P lies on the segment FyF} intersecting .
Then the angles in question are obviously equal (Figure 1.7).

Exercise 1. a) When will the absolute value of the difference in distances
from P to points F; and F5 lying on different sides of [ be maximal?

b) Given two lines ! and !’ and a point F not on any of those lines, find
a point P on [ such that the (signed) difference of distances from it to I’ and
F is maximal.

Solution. a) Let F} be the reflection of F; in I. Clearly, FoX = F3X for
any point X on [. We need a point P such that the difference of distances
from P to Fy and F} is maximal. It follows from the triangle inequality that
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FIGURE 1.7

|F1P — F3P| < F1F; and the maximum is attained if and only if Fy, Fj and
P lie on a straight line. Since the points F; and Fj are the reflections of
each other, the angles formed by the lines F} P and FyP with [ are equal
(Figure 1.8).

FIGURE 1.8

b) Let F’ be the reflection of F in I. Of the two points F and F’ choose
the one whose (signed) distance to !’ is minimal. Let it be F' and let d be
the distance from F to . Then for any point P on [ the distance to !’ is
not greater than PF + d. Therefore the difference in question never exceeds
d. On the other hand, it is exactly d when P lies on the perpendicular to !’
passing through F (Figure 1.9).

We also note that if the line F; F} in a) is parallel to [ and the line I in b)
is perpendicular to [, then there is no maximum (it is attained at infinity).

Now we state one of the most important properties of conics, the so-
called optical property.

FIGURE 1.9
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Theorem 1.1 (The optical property of the ellipse). Suppose a line |
is tangent to an ellipse at a point P. Then | is the bisector of the exterior
angle Fy PF; (Figure 1.10).

FIGURE 1.10

Proof. Let X be an arbitrary point of ! different from P. Since X is outside
the ellipse, we have XF + X F» > PF) + PF,, i.e., of all the points of [ the
point P has the smallest sum of the distances to F; and F». This means
that the angles formed by the lines PF; and PF; with [ are equal. O

Exercise 2. State and prove the optical property for parabolas and hyper-
bolas.

FIGURE 1.11

Solution. For parabolas the optical property is stated as follows. Suppose
a line ! is tangent to a parabola at a point P. Let P’ be the projection of P
to the directrix. Then [ is the bisector of the angle FPP' (Figure 1.11).
Suppose that the bisector of the angle FPP’ (call it ') intersects the
parabola in yet another point, say, () whose projection to the directrix is
denoted Q’. By the definition of the parabola, FQ = QQ’. On the other
hand, triangle FPP’ is isosceles, and the bisector of the angle P is the
midpoint perpendicular to FP'. Therefore for any point Q on that bisector
we have QP = QF = QQ’'. But this is impossible because Q' is the only
point on the directrix of the parabola where the distance to @ is minimal.
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FIGURE 1.12

We now state the optical property for the hyperbola.

If a line [ is tangent to a hyperbola at a point P, then [ is the bisector of
the angle F; PF,, where F; and F; are the foci of the hyperbola (Figure 1.12).

Suppose that the bisector I’ of the angle F} PF, intersects the hyperbola
at yet another point @ (lying on the same branch with P). For convenience,
assume that P lies on the branch closer to Fj. Let F| be the reflection of
Fyin l'. Then FAQ = QF], F;P = PFJ; moreover Fy, F| and P lie on a
line. Thus, F,P — PF} = F»Q — F1Q, and therefore FoF] = F,P — PF| =
F>,Q — QF]. But, by the triangle inequality, FoF] > FoQ — QFY.

The above results can also be proved by arguments similar to the proof
of the optical property of the ellipse. For that, use Exercise 1.

The optical property of the parabola was already known in ancient
Greece. For example, Archimedes, by arranging copper plates into a para-
bolic mirror, managed to set on fire the Roman fleet laying siege to Syracuse.

Exercise 3. Consider the family of confocal conics (these are conics with
the same foci). Prove that any hyperbola and any ellipse from that fam-
ily intersect at right angles (the angle between two curves is by definition
the angle between the tangents to them at their point of intersection; see
Figure 1.13).

FIGURE 1.13
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Solution. Suppose an ellipse and a hyperbola with foci F; and F» intersect
at P. Then their tangents at that point will be the bisectors of the exterior
and interior angles F) PF5, respectively. Therefore they are perpendicular.

Theorem 1.2. Suppose the chord PQ contains a focus Fy of the ellipse and
R is the intersection of the tangents to the ellipse at P and Q. Then R is
the center of an excircle of the triangle Fo PQ, and F; is the tangency point
of that circle and the side PQ (Figure 1.14).

FIGURE 1.14

Proof. By the optical property, PR and QR are the bisectors of the exterior
angles of the triangle F5PQ. Therefore R is the center of an excircle. The
tangency point (call it FY) of the excircle and the corresponding side and the
point F» cut the perimeter of the triangle into equal parts, i.e., F{ P+ PF, =
F>Q+QF]. But F; has this property and there is only one such point. Hence
F{ and F} coincide. a

Corollary. The straight line connecting a focus of an ellipse and the inter-
section of the tangents to the ellipse at the ends of a chord containing that
focus is perpendicular to the chord.

For the hyperbola, Theorem 1.2 is also true but the excircle should be
replaced by the incircle.

1.4. The isogonal property of conics
The optical property yields elementary proofs of some amazing results.

Theorem 1.3. From any point P outside an ellipse draw two tangents to
the ellipse, with tangency points X and Y. Then the angles F1PX and
E,PY are equal (Fy and Fy are the foci of the ellipse).

Proof. Let F}, F} be the reflections of F; and F> in PX and PY, respec-
tively (Figure 1.15).

Then PF| = PF, and PF) = PF,. Moreover, the points Fj, Y and
F} lie on a line (because of the optical property). The same is true for the
points Fp, X and F|. Thus FoF] = X + XF, = RY +YF = FF,.
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FIGURE 1.15

Thus, the triangles PF>F| and PF,F; are equal (having three equal sides).
Therefore

LFPFy +2/FiPX = ZFQPFI' = ZF1PF2' = /L1 PFy, + 2/F,PY.
Hence ZF1PX = /F,PY, which is the desired result.} O

Figure 1.16 shows that a similar property holds for the hyperbola.2

FIGURE 1.16

Suppose now that the ellipse (or hyperbola) with foci F; and F; is in-
scribed in triangle ABC. It follows from the above that ZBAF; = LCAF5,
/LABF, = ZCBF;, and ZACF, = ZBCPF.

We shall show in 2.3 that, in a plane, for any (with rare exceptions)
point X there is a unique point Y such that X and Y are the foci of a

1We consider the case when F; and F; are inside the angle F{PF, and F; lies inside
the angle F> PF}. In the remaining cases the arguments are similar.

2The reader should check two cases: when the tangency points are either on different
branches or on the same branch.
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conic tangent to each side of a triangle. Such Y is said to be the isogonal
conjugate of X with respect to the triangle.

The construction used in the proof of Theorem 1.3, allows one to obtain
yet another interesting result. Since the triangles PFoF] and PF}F; are
equal, the angles PF|F» and PF, F} are also equal. Therefore

/PFX = LPF|Fy, = /PF,F} = LPFY.
Thus we have proved the following generalization of Theorem 1.2.

Theorem 1.4. In the notation of Theorem 1.3, the line F1 P is the bisector
of the angle XF1Y (Figure 1.17).

FIGURE 1.17

Theorem 1.5. The locus of points from which a given ellipse is seen at
a right angle (i.e., the tangents to the ellipse drawn from such a point are
perpendicular) is a circle centered at the center of the ellipse (Figure 1.18).

FIGURE 1.18
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Proof. Let F; and F» be the foci of the ellipse and suppose that the tangents
to the ellipse at X and Y intersect in P. Reflecting F} in PX we have a
point Fj. It follows from Theorem 1.3 that ZXPY = ZF|PF, and F|F, =
Fi X +F>X, ie., the length of the segment F]F, equals the major axis of the
ellipse (the length of the rope tying the goat). The angle FjPF; is right if
and only if F{ P2 + F;P%2 = F|FZ (by the Pythagorean theorem). Therefore
XPY is a right angle if and only if FyP?2 + F,P? equals the square of the
major axis of the ellipse. But it is not difficult to see that this condition
defines a circle. Indeed, suppose Fj has Cartesian coordinates (z1,y1), and
F5 has coordinates (z2,y2). Then the coordinates of the desired points P
satisfy the condition

(z-z1)?+@W—n)+(@-22)*+@y—1)?=C,

where C is the square of the major axis. But since the coefficients of z?
and y? are equal (to 2) and the coefficient of zy is zero, the set of points
satisfying this condition is a circle. By virtue of symmetry, its center is the
midpoint of the segment Fy F5. |

For the hyperbola such a circle does not always exist. When the angle
between the asymptotes of the hyperbola is acute, the radius of the circle is
imaginary. If the asymptotes are perpendicular, then the circle degenerates
into the point which is the center of the hyperbola.

Example. Given points P, ..., P, and numbers k1, ..., k, and C, the locus
of points X such that ki XP2 + --- + k, X P2 = C is a circle, known as the
Fermat-Apollonius circle. Clearly, it may have an imaginary radius (when?).

Theorem 1.6. Suppose a string is put on an ellipse o and then pulled
tight using a pencil. If the pencil is rotated about the ellipse, it will traverse
another ellipse confocal with a (Figure 1.19).

FiGURE 1.19
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Proof. Clearly, the new figure (call it ;) has a smooth boundary. We shall
show that at each point X on «; the tangent to the new curve coincides with
the bisector of the exterior angle F} X Fy.

Let XM and XN be the tangents to «. Then ZFi XN = ZF, XM, and
hence the bisector [ of the exterior angle NX M coincides with the bisector
of the exterior angle [1 X F5. Call it .

Let Y be an arbitrary point on [ and YL and Y R the tangents to «, as
shown in Figure 1.19. We assume that Y lies “to the left” of X; the other
case is argued similarly.

Let P be the intersection of the lines X M and Y L. It is easy to see that
YN <YR+ <~RN,and “LM < LP+PM. Moreover, since ! is the exterior
bisector of the angle NX P, we have PX + XN < PY + Y N. Therefore

MX+XN+-NM<MX+XN+v-NL+LP+ PM
=PX+XN+<~NL+LP<PY+YN+<-NL+LP
=LY +YN+<NL
<LY+YR+“~RN+<~NL=LY +YR++“-RL

(here the arcs are meant to be the arcs under the string). Therefore Y lies
outside a;. The same is true for any point Y on [. It follows that a; contains
a single point of [, i.e., the line is tangent. It also follows at once that the
obtained curve is convex.

Thus the sum of the distances to the foci F; and F5 does not change
with time. Therefore the trajectory of the pencil is an ellipse.

Here is a more rigorous approach to the last claim. Suppose X is outside the
ellipse. Put the pencil at X and pull the string around it and around the ellipse.
Let f(X) be the length of the string and g(X) = F; X + F2 X (a point is understood
as a pair of its coordinates; thus both f and g depend on a pair of real numbers).
One can show that those functions are continuously differentiable and that the
vectors grad f = (2L, ay) and grad g = (2, g%) are nonzero at each point. Then,
by the implicit function theorem, the curve traversed by the pencil with a string of
fixed length (i.e., a level curve of f) is smooth (continuously differentiable). It now
follows that the curve can be parametrized by a differentiable function R = R(t)
(this is again a pair of coordinate functions z = z(t), y = y(t)) whose tangent
vector is different from zero. As shown before, the tangent vector & = (2, )
of the curve is tangent to a level curve of g, i.e., it is perpendicular to grad g(R) at
R = R(t). Consider the function g(R(t)). Its derivative is

dg(R(t)) _ 9 du(t) , By dy(t)
dt Oz dt Oy dt

(this is the orthogonality condition mentioned above), i.e., g(R(t)) is constant. This
means that our curve lies on an ellipse with the same foci. Since any ray starting
at F} must contain a point on our curve, the curve coincides with the ellipse. O

=0

Problem 2. A 2n-gon is circumscribed about a conic with focus F. Its
sides are colored in black and white in an alternating pattern. Prove that
the sum of the angles at which the black sides are seen from F' equals 180°.
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Problem 3. An ellipse is inscribed in a convex quadrilateral such that
its foci lie on the (distinct) diagonals of the quadrilateral. Prove that the
products of the opposite sides are equal.

1.5. Curves of second degree as projections of the circle

Given a circle, draw the perpendicular through its center to the plane of the
circle and pick a point S on it. The lines connecting S to the points of the
circle form a cone. Consider the section of the cone by a plane 7 intersecting
all of its rulings and not perpendicular to its axis of symmetry.

Now inscribe in the cone two spheres touching 7 at points F; and Fj
(Figure 1.20).

FIGURE 1.20

Let X be an arbitrary point on the intersection of the cone and the
plane w. The ruling SX intersects the inscribed spheres at points Y; and
Ys. We have XF} = XY; and XF; = XY53, since the segments of tangents
to a sphere drawn from the same point are equal. Therefore XF; + X F; =
Y1Y;. But Y7Y5 is the segment of the ruling lying between the two planes
perpendicular to the axis of the cone, and its length does not depend on the
choice of X. Hence the intersection of the cone with 7 is an ellipse. The
ratio of its semiaxes depends on the tilt of the plane and, obviously, can take
on any value. Therefore any ellipse can be obtained as a central projection
of the circle.

A similar proof shows that if the secant plane is parallel to two rulings
of the cone, then the cross-section is a hyperbola (Figure 1.21).
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FIGURE 1.21

(Figure 1.22).

dllli]llu..._ e I

FIGURE 1.22

Inscribe in the cone the sphere tangent to m at a point F. This sphere
is tangent to the cone along a circle lying in a plane o. Let ! be the line
of intersection of the planes m and o. For an arbitrary point X in the
intersection of the cone and the plane 7 let Y be the point of intersection
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of the ruling SX with the plane o and let Z be the projection of X to [.
Then X F = XY since the two segments are tangent to the sphere. On the
other hand, Y and Z lie in o, the angle between XY and o is equal to the
angle between a ruling and a plane perpendicular to its axis, and the angle
between X Z and o is equal to the angle between the planes 7 and o. By the
choice of 7, those angles are equal. Hence XY = X Z, since these segments
form equal angles with the plane 0. Therefore XF = X Z and X lies on the
parabola with focus F' and directrix [.

Thus any nondegenerate curve of order two can be obtained as a section
of the cone. Because of that, such curves are also called conic sections or
simply conics.

We remark that if the cone is replaced by the cylinder, then the same ar-
gument shows that the corresponding section will be an ellipse. Accordingly,
the ellipse can be obtained as a parallel projection of the circle.

Exercise 1. Find the locus of the midpoints of the chords of an ellipse
which are parallel to a given direction.

Solution. Consider the ellipse as a parallel projection of a circle. Then
the parallel chords of the ellipse and their midpoints correspond to parallel
chords of the circle and their midpoints, the latter lying on a diameter of the
circle. Therefore the locus of the midpoints of parallel chords of the ellipse
is also a diameter (i.e., a chord passing through the center).

Exercise 2. Using a straightedge and a compass find the foci of a given
ellipse.

Solution. Construct two parallel chords of the ellipse. By the preceding
exercise, the line connecting their centers is a diameter of the ellipse. After
constructing another diameter, we can find the center O of the ellipse. By
the symmetry of the ellipse, a circle centered at O intersects the ellipse at
four points forming a rectangle with sides parallel to the axes of the ellipse.
Now the foci of the ellipse can be found as the points of intersection of the
major axis and the circle centered at the end of the minor axis of radius
equal to the major half-axis.

The spheres inscribed in the cone and touching the secant plane are
called the Dandelin spheres.

1.6. The eccentricity and yet another definition of conics

The construction just described of the Dandelin spheres yields another im-
portant property of conics.

Suppose a plane 7 intersects all the rulings of a circular cone with vertex
S. Consider a sphere inscribed in the cone and touching 7w at a point Fj.
As in the parabola case, let o be the plane containing the tangency points.
Let | be the line of intersection of m and . Suppose a point X is in the
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intersection of the cone and the plane w. Let Y be the intersection of the
line SX with o and Z the projection of X to . We shall show that the ratio
of XY and X Z is constant, i.e., does not depend on X.

FIGURE 1.23

Let T be the projection of X to 0. The ratio of XT and XY does not
depend on X and equals the cosine of the angle between a ruling of the cone
and its axis (call that angle «). The ratio of XT and XZ also does not
depend on X and equals the cosine of the angle between the plane 7 and
the cone axis (call that angle 3). Therefore

XY XY XT cosp

XZ XT XZ cosa’
Since X F; and XY are equal (as tangents to the sphere passing through
X), the ratio of XFy and X Z is constant.

Thus for any conic there is a line ! such that for any point on the conic
the ratio of the distances to the focus and that line is constant. This ratio
is called the eccentricity of the conic curve, and the lines are called the
directrices. Both the ellipse and the hyperbola have two directrices (one for
each focus).

It is easy to see that this property leads to yet another definition of
curves of degree two.

A conic curve with focus F', directrix I (F not on [), and eccentricity €
is the set of points where the ratio of distances to F' and to [ equals e.

If € > 1, then the curve is a hyperbola, if € < 1, it is an ellipse, and when
€ =1, it is a parabola.

Problem 4. Prove that the asymptotes of all equilateral hyperbolas with
focus F' and passing through a point P are tangent to two circles (one circle
for each family of the asymptotes).
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1.7. Some remarkable properties of the parabola

In this section F' denotes the focus of the parabola under consideration.
We begin with a lemma that we will use more than once.

Lemma 1.1. If the focus of a parabola is reflected in a tangent, then its
image will be on the directriz. That image is the projection of the point
where the tangent touches the parabola (Figure 1.24).

FIGURE 1.24

Proof. Suppose a line [ touches the parabola at P and let P’ be the pro-
jection of P to the directrix. Since the triangle FPP’ is isosceles and [ is
the bisector of the angle P, [ is an axis of symmetry of the triangle. Hence
the reflection P’ of F in [ is on the directrix. O

Corollary. The projections of the focus of the parabola to its tangents lie
on the line tangent to the parabola at its vertex. (Figure 1.25).

FIGURE 1.25

Lemma 1.2. Suppose the tangents to the parabola at points X and Y in-
tersect at a point P. Then P is the center of the circumcircle of the triangle
FX'Y', where X' and Y’ are the projections of X andY to the directriz of
the parabola, and F is the focus of the parabola (Figure 1.26).

Proof. By Lemma 1.1, these two tangents are midpoint perpendiculars to
the segments FX' and FY’. Therefore their point of intersection is the
center of the circumcircle of the triangle FX'Y’ (Figure 1.26). O
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FIGURE 1.27

Corollary. If PX and PY are tangent to the parabola, then the projection
of P to the directriz is the midpoint of the segment with end-points at the
projections of X and Y (Figure 1.27).

The next theorem is similar, with the parabola in place of the ellipse, to
Theorems 1.2 and 1.5. What is the set of points where the parabola is seen
at a right angle? The answer is given by

Theorem 1.7. The set of points P where the parabola is seen at a right
angle is the directriz of the parabola. Moreover, if PX and PY are tangent
to the parabola, then XY contains F and PF is a height of the triangle
PXY (Figure 1.28).

FIGURE 1.28

Proof. Suppose P lies on the directrix, and let X’ and Y’ be the projections
of X and Y to the directrix. Then the triangles PXF and PXX’ are
equal (since they are symmetric with respect to PX). Hence ZPFX =
ZPX'X = 90°. Similarly, ZPFY = ZPY'Y = 90°. Moreover, ZXPY =
1(LFPX' + LFPY') = 90°. The fact that there are no other points with

this property is obvious. O
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Since similar assertions are true for the remaining conics, the above
theorem seems to be rather natural. However, the first part of the theorem
has an unexpected generalization that holds only for parabolas. It will be
used later in 3.2 in the proof of Frégier’s theorem.

Theorem 1.8. The set of points from which a parabola is seen at an angle
¢ or 180° — ¢ is a hyperbola with focus F' and directriz | (Figure 1.29).

FIGURE 1.29

Proof. Indeed, suppose the tangents PX and PY to the parabola drawn
from P form an angle ¢. We first consider the case when ¢ > 90°.

Let X’ and Y’ be the projections of X and Y to the directrix. Clearly,
ZX'FY' = 180° — ¢. By Lemma 1.2, P is the center of the circumcircle of
the triangle FX'Y’. Therefore ZX'PY’ = 360° — 2¢.

Thus the distance from P to the directrix equals PF | cos(180° — ¢)| =
PF|cos¢| and P lies on the hyperbola whose focus and directrix coincide
with the focus and directrix of the parabola, and whose eccentricity equals
| cos @] (i.e., the angle between the asymptotes equals 2¢).

The same is true if the angle between the tangents is 180° — ¢. Moreover,
if the parabola lies inside an acute angle between the tangents, then P is on
the “farther” from F branch of the hyperbola, and if it lies inside an obtuse
angle, then P is on the “closer” branch. O

For parabolas one can also state a result similar to Theorems 1.3 and
1.4.

Theorem 1.9. Let PX and PY be the tangents to the parabola passing
through P, and let | be the line passing through P parallel to the azis of the
parabola. Then the angle between the lines PY and l is equal to ZXPF
and the triangles X FP and PFY are similar (as a consequence, F'P is the
bisector of the angle XFY ; see Figure 1.30).

Proof. Let X’ and Y’ be the projections of X and Y to the directrix. Then,
by Theorem 1.2, the points F', X’, and Y” lie on a circle centered at P. Hence
ZX'Y'F = L/X'PF = ZXPF. On the other hand, the angle between PY
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FIGURE 1.30

and [ is equal to the angle between Y'F and X'Y” because ! is perpendicular
to X'Y" (the directrix of the parabola) and Y'F is perpendicular to PY
(moreover, PY is the midpoint perpendicular to Y’F). This proves the first
part of the theorem.

We now prove the second part. Since [ is parallel to YY’, the angle
between PY and [ is equal to the angle PYY’, which, by the optical property,
is equal to the angle FYP. Thus ZFYP = /X PF. Similarly, /ZFXP =
ZY PF. Therefore the triangles X F'P and PFY are similar. O

The next theorem is actually a consequence of Theorem 1.9. But we shall
prove it using Simson’s line, which will help us find even more interesting
properties of the parabola.

Theorem 1.10. Suppose a triangle ABC is circumscribed about a parabola
(i.e., the lines AB, BC, CA are tangent to the parabola). Then the focus
of the parabola lies on the circumcircle of the triangle ABC.

Proof. By the Corollary of Lemma 1.1, the projections of the focus to the
sides all lie on a straight line (which is parallel to the directrix and lies at
half the distance from the focus). Now we can use Simson’s lemma.

Lemma 1.3 (Simson). The projections of P to the sides of a triangle ABC
lie on a line if and only if P lies on the circumcircle of the triangle.

Proof. Let P,, P, and P, be the projections of P to BC, CA and AB,
respectively. We consider the case shown in Figure 1.31; the remaining
cases are argued similarly.

The quadrilateral PC P, P, is inscribed, hence Z/PP,P, = Z/PCP,. Sim-
ilarly, ZPP,P, = ZPAP,. The points P,, P, and P, lie on a line if and only
if ZPP,P, = /PP,P, or, equivalently, /PAP, = /PCP,. But this means
that P lies on the circumcircle of the triangle ABC. The remaining cases
are argued similarly.

An identical argument proves the converse. If P lies on the circumcircle
of a triangle ABC, then /PAB = /PCP, = ZPP,P, (the latter holds since
P, C, P, and P, lie on a circle). Similarly, /ZPAB = /PP,P,. Therefore
P,, P, and P, lie on a straight line. O
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FIGURE 1.31

This proves Theorem 1.10. O

The line just described is called Simson’s line of P.

Thus with each point on the circumcircle of a triangle ABC' we can asso-
ciate a unique parabola tangent to the sides of the triangle. More precisely,
take an arbitrary point P on the circumcircle of the triangle ABC and re-
flect it in the sides of the triangle. We obtain points P4, Pg and Pg, lying
on a line. The parabola with focus at P and directrix P4 P¢ is tangent to
all the sides of the triangle (for example, it will touch BC at the point of
intersection of BC' and the perpendicular to P4Pc; see Figure 1.32).

FIGURE 1.32

Simson’s line has some interesting properties.

Lemma 1.4. Suppose a point P lies on the circumcircle of a triangle ABC.
Choose a point B on the circumcircle such that the line PB' is perpendicular
to AC. Then BB’ is parallel to Simson’s line of P (Figure 1.33).
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FIGURE 1.33

Proof. Consider the case shown in Figure 1.33; the remaining cases are
argued similarly. Let P, and P, be the projections of P to the sides AB
and AC, respectively. Then ZABB' = ZAPB' as the angles subtending the
arc AB'. Since quadrilateral AP.P,P is inscribed (AP is a diameter of its
circumcircle) and the sum of the opposite angles of an inscribed quadrilateral
equals 180°, we have ZAPB' = /APP, = 180° — ZAP,P, = /BP,P,.
Therefore P,P, is parallel to BB'. O

Corollary 1. When the point P moves along the circle, Simson’s line rotates
in the opposite direction with velocity one half the rate of change of the arc
PA.

Corollary 2. Simson’s line of P relative to a triangle ABC' cuts the segment
PH (where H is the orthocenter of the triangle ABC) in half (Figure 1.34).

FIGURE 1.34

Proof. It is easy to see that ZAHC = 180° — ZABC, and therefore the
reflection H' of H in AC lies on the circumcircle of the triangle ABC.
Since the lines PB’ and BH’ are perpendicular to AC, the quadrilateral
PB'BH'’ is a trapezoid; being inscribed, it must be equilateral. Therefore
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the reflection of PH' in AC (which is a line parallel to the axes of symmetry
of the trapezoid) is parallel to BB’. Therefore P'H is parallel to BB’, and
therefore to Simson’s line of P (here P’ is the reflection of P in AC). Since
Py (the projection of P to AC) is the midpoint of PP’, Simson’s line is a
midline of the triangle HPP’ and therefore cuts HP in half. O

Corollary 2 together with Theorem 1.10 imply the following beautiful
result.

Theorem 1.11. The orthocenter of a triangle circumscribed about a parabo-
la lies on the directriz (Figure 1.35).

b4

FIGURE 1.35

Problem 5. Suppose a point X moves along a parabola, the normal to the
parabola at X (i.e., the perpendicular to the tangent) intersects its axis at
a point Y, and Z is the projection of X to the axis. Prove that the length
of the segment ZY does not change.

Problem 6. Two travelers move along two straight roads with constant
speeds. Prove that the line connecting them is always tangent to some
parabola (the roads are not parallel and the travelers pass the intersection
at different times).

Problem 7. A parabola is inscribed in an angle PAQ. Find the locus of the
midpoints of the segments cut out by the sides of the angle on the tangents
to the parabola.



Chapter 2

Some Results from Classical
Geometry

2.1. Inversion and Feuerbach’s theorem

Inversion in the circle with center O and radius r is the transformation of
the plane which sends each point A to the point A’ lying on the ray OA and
such that OA’ = 0"—;. The point O itself is sent to a point at infinity.

Clearly, under such a transformation lines passing through O remain
fixed as sets.

Inversion is nice because it transforms circles not passing through the
center of inversion into circles, whereas the circles that pass through the
center are transformed into lines. The proofs of these statements can be
found in [10], [11], and [5].

FIGURE 2.1

Even though inversion maps circles to circles, it has a noticeable tech-
nical drawback: it does not transform conics into conics. For example, an
equilateral hyperbola under inversion in the circle with the same center as
the hyperbola transforms into the Bernoulli lemniscate (Figure 2.1). How-
ever, a little later, using inversion, we will construct the so-called polar
transformation, which does have this property.

27
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We will use inversion to prove Feuerbach’s theorem, thus showing the
power of this tool. We will have another encounter with Feuerbach’s theorem
in 4.1.

First we recall the definition of the nine-point circle, also called the Euler

circle.

FIGURE 2.2

The Euler circle or the nine-point circle is the circle passing through the
midpoints of the sides of a triangle ABC. It turns out that it also intersects
the sides at the feet of the heights. Moreover, if H denotes the orthocenter
of the triangle, then the midpoints of the segments AH, BH, and CH also
lie on that circle.

Now we shall prove it. Let M,, My, and M, be the midpoints of the
sides and H,, Hyp, and H, the feet of the heights (Figure 2.2). We show that
the angles MM, M, and MyH, M, are equal. This would imply that H, lies
on the Euler circle.

ACH, is aright triangle and therefore My H, = M, A. Similarly, M H, =
M_.A. Since MyA = M,M, and M. A = M,M,, triangles MyM, M, and
MyH M, are equal. Therefore the corresponding angles are also equal. Sim-
ilarly one shows that the points H, and H, also lie on the Euler circle.

Notice that the feet of the heights of triangles ABC and ABH coincide
and therefore their Euler circles also coincide. Therefore the Euler circle
also contains the midpoints of the segments AH and BH. The fact that it
also contains the midpoint of the segment HC is established similarly.

Now we can prove Feuerbach’s theorem.

Theorem 2.1 (Feuerbach). The nine-point circle is tangent to the incircle
and the excircles of the triangle (if the triangle is equilateral, it coincides
with the incircle) (Figure 2.3).

Proof. Let G,, Gy and G, be the tangency points of the incircle and the
sides of the triangle. Let A; be the foot of the bisector of the angle A and
C’ the reflection of C in AA;. Let P be the intersection of AA; and CC'.
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FIGURE 2.3

Notice that P is the midpoint of CC’ and therefore P lies on the midline
M, M,. Also notice that

1 1
MoP = |M,My — PMy| = 5|AB — AC| = 3|BG. — CGy| = %lBGa — CG,|
= M,Gl.

Since the pairs of triangles MyM,C and ABC, ABA; and PM,A; are
similar, we have
M,P _ BC' M,Q
M,M, BA M,P’
where Q is the intersection of A;C’ and M,M;. Hence, MaG?, = M,P? =
M,Q - MyM,. Therefore the inversion with center M, and radius M,G,
transforms M, into a point lying on the line C’'A;, the latter being the
reflection of BC in the bisector of the angle A. The same is true for M..
Thus the inversion with center M, and radius M,G, transforms the Euler
circle into a line tangent to the incircle and therefore the nine-point circle
is also tangent to the incircle.
For excircles, Feuerbach’s theorem is proved similarly. O

The tangency point of the incircle and the Euler circle is called the
Feuerbach point (denoted F'). Sometimes the tangency points of the excircles
and the Euler circle are also called the Feuerbach points (denoted Fy, Fp
and Fp).

2.2. Basic facts about projective transformations

A transformation of the plane is said to be projective if it preserves lines.
Under such a transformation parallel lines need not remain parallel. How-
ever, if we mean the usual plane, parallel lines will transform into parallel
lines because the transformation is one-to-one. For that reason one adds the
so-called line at infinity. The points of that line, also referred to as points
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at infinity, are viewed as the intersections of parallel lines and each point
at infinity is regarded as belonging to all the lines with the same direction.
The plane completed this way is called the projective plane.

Definition. A transformation of the projective plane that sends each line
(including the line at infinity) to a line is said to be projective.

It follows from the definition that projective transformations form a
group (in other words, the composition of two projective transformations is
a projective transformation). Notice that among the subgroups of this group
are the groups of affine transformations preserving parallel lines (these can
also be defined as the transformations preserving the line at infinity), as well
as the groups of similarities and of motions.

A projective transformation can be visualized as follows. Suppose a
drawing on a glass plate is projected from a point source of light to a wall.
Then the drawing may look quite distorted but the lines on the glass will
transform into lines on the wall. Moreover the plane passing through the
source of light parallel to the wall will intersect the plate along a line. The
points of that line will not project to the wall and we may consider the image
of that line to be the line at infinity on the wall. Similarly, the plane parallel
to the glass plate intersects the wall along a line which may be considered
as the image of the line at infinity on the plate.

One can show that this example is universal, i.e., any projective trans-
formation is a composition of a central projection and a motion of the space
sending the plane of the projection to the original plane. Therefore by
virtue of the results proved in 1.5, projective transformations send conics
into conics. Indeed, any projective transformation is a composition of two
transformations such that the first of them sends the conic into a circle. The
second transformation will send the circle only into a conic. This shows that
projective transformations are well suited for work with conics.

Notice that the hyperbola intersects the line at infinity at two points.
Those points define the directions of the asymptotes of the hyperbola. The
parabola is tangent to the line at infinity at the point which defines the
direction of the axis of the parabola. Finally, the ellipse has no common
points with the line at infinity.

We now state some of the main properties of projective transformations.
Some of them will be explained rather than proved. Detailed proofs can be
found in [10], [11] and [12].

1. All quadrilaterals are projectively equivalent. More precisely, for any
two quadruples of points in general position A, B, C, D and A, B', C', I/,
there is a unique projective transformation sending A to A’, B to B’, C to
C’ and D to D'.

It suffices to check that any quadruple can be sent by a projective trans-
formation into a square and that such a transformation is unique.
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We can first send the intersections of the pairs of lines AB and CD
and also AD and BC to infinity. Then our four points turn into the ver-
tices of a parallelogram. Using an affine transformation, we then turn that
parallelogram into a square.

Now connect the points A, B, C, D by straight lines. Then do the
same with all the intersections of those lines and mark the intersections of
the new lines. Keep repeating this procedure. The images of all the marked
points are uniquely determined and they approximate any point in the plane.
Therefore the desired transformation is unique.

Next we want to show that any five points in general position determine
a unique conic. Transform four of them into the square whose vertices have
coordinates £1. It is easy to check that the conics passing through these
vertices are of the form az? + (1 — a)y? = 1. It is now obvious that exactly
one curve of this form may pass through a given point in the plane.

Later on, we will show that there is a unique conic tangent to five given
lines in general position.

2. Projective transformations preserve the cross-ratios of points on a
line. This means that if points A, B, C and D lying on a line are sent to
points A’, B’, C' and D', then
__AC-BD
"~ AD-BC
Notice that the lengths of the segments are signed.

(AB;CD) = (A'B;C'D).

FIGURE 2.4

Let us prove this. As was shown before, any projective transformation
may be viewed as a central projection. Let P be the center of that projection

(Figure 2.4). Then

AC-BD _ Saacp ' SaBDP

AD-BC ~ Saapp-SaBcp’
since the area of each of those triangles equals half the product of the length
of the corresponding segment by the distance from P to the line containing

all those points. On the other hand, the area of each triangle equals half the
product of the sides by the sine of the angle between them (for convenience,
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denote the angle between PA and PB by «, between PB and PC by 3, and
between PC and PD by «). Hence

Saacp - SABDP _ (AP -CP-sin(a+g)-(BP-DP - sin(8 +7))

SAADP - SABCP h (AP - DP -sin(a+ 3+7)) - (BP-CP -sinp)

_ sin(a+f) -sin(8+7)
sin(f@+B+7)-sinf
Since this ratio does not depend on the line on which our points lie, we

have

(A/B/;CIDI) — Sifl(a + /B) . Sin(/ﬁ + 7) — (AB; CD).
sin(a+ B +7) - sin
This property allows us to define the cross-ratio of four lines intersecting
at a single point as the cross-ratio of their intersections with an arbitrary
line. Clearly, the latter is also preserved under projective transformations.
The cross-ratio of four lines a, b, ¢ and d will be denoted by (ab; cd).

FIGURE 2.5

The preservation of the cross-ratio implies that if the images of three
points on the line are known, then the images of the remaining points are
uniquely determined. In particular, a projective transformation fixing three
points on a line fixes the entire line.

3. Pappus’ theorem.

Theorem 2.2. If points Ay, By, C; lie on a line l; and Az, By, Cs lie on a
line la, then the intersections of the lines A1 By and A2 By, B1Cs and BoCh,
C1Az and C2A; lie on a straight line (Figure 2.5).

To see this, just move the intersections of the pairs A; By and AxB;,
B;Cs and B3C; to infinity and use Thales’ theorem.

4. Desargues’ theorem.

Theorem 2.3. The lines A; Az, B1 By, C1Cy connecting the corresponding
vertices of triangles A1 B1C1 and A3 BoCs intersect in one point if and only
if the intersections of lines A1B; and A3Bs, B1C; and ByCy, C1A; and
C2A; lie on one line (Figure 2.6).
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FIGURE 2.6

Here use a projective transformation to move the intersections of pairs
of lines A; By and A2Bs, B1C; and B2C5 to infinity and again use Thales’
theorem.

As a rule, projective transformations do not preserve circles. However,
the following is true.

5. Given a circle and a point C inside it, there is a projective trans-
formation sending the circle into a circle and C into the center of the new
circle.

This fact will be established a little later using polar correspondence.

6. Given a circle and a nonintersecting line [, there is projective trans-
formation sending the circle to a circle, and the line [ to the line at infinity.

Using a projective transformation send [ to the line at infinity. Then the
circle can only transform into an ellipse, since the image does not intersect
the line at infinity. Now use an affine transformation to send the ellipse into
a circle (such a transformation does obviously exist).

7. Pascal’s theorem.

Theorem 2.4. The intersection points of the opposite sides of an inscribed
hezagon are all on one straight line (Figure 2.7).

Proof. Let ABCDEF be the inscribed hexagon. Using a projective trans-
formation, move the intersections of the pairs of lines AB and DE, BC
and EF to infinity. Then AB || DE and BC || EF; we need to show that
CD || FA. But this is not difficult. As the angles ABC and DEF have
parallel sides, they are equal. Therefore the arcs AC and DF are also equal.
But this means that the lines AF and CD are parallel. O

8. Brianchon’s theorem.

Theorem 2.5. The principal diagonals of a circumscribed hexagon meet at
one point (Figure 2.8).
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FIGURE 2.7

Proof. Move the intersection of two diagonals to the center of the circle.
We need to show that the third diagonal passes through the center.

Thus let the hexagon ABCDEF be circumscribed about a circle cen-
tered at O and suppose that the diagonals AD and BFE pass through O. Let
Aj, By, ..., F; be the tangency points of the circle and the sides AB, BC, ...,
F A, respectively. It is easy to see that ZE,0Cy = ZF,0OB; = 2/A0B and
that ZF1OF = /ZFOF; and ZB,0C = £ZCOC;. Hence

LFOFR+/F10B1+4B,0C = LE1OF+/E10C1+4£C0OC, = = 180°.
Therefore F', O and C all lie on a straight line. a

FIGURE 2.8

Notice that the theorems of Pascal and Brianchon remain true if the
hexagon degenerates into a pentagon or a quadrilateral. Later on, we will
use this observation on several occasions.

In the proof of Pascal’s theorem we needed the assumption that the cor-
responding line does not intersect the circle, and in the proof of Brianchon’s
theorem—that the intersection of the diagonals lies inside the circle. It turns
out that these two theorems are always true, i.e., the order of the points and
the lines in those theorems can be arbitrary.
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It is also important to mention that these are purely projective theorems.
Hence they are also true for conics. In Chapter 3 we formulate and prove
these theorems in a general form.

9. Suppose points A, B, C and D lie on a circle. The inscribed angle
theorem implies that for all points X on that circle the cross-ratio of lines
XA, XB, XC and XD is the same. Let us call it the cross-ratio of A,
B, C, and D. Clearly, if a projective transformation sends the circle to a
circle, then it preserves the cross-ratio of the points. The converse is also
true: a cross-ratio preserving transformation of a circle can be extended to
a projective transformation of the entire plane.

Projective transformations are closely related to transformations that
interchange lines and points.

Definition. The polar correspondence with respect to the circle with center
O and radius r associates to each point A of the plane, different from O,
the line a perpendicular to OA and cutting the ray OA at the point inverse
to A with respect to the circle. The line a is called the polar of A and the
point A is called the pole of the line a. The polar of O is defined as the line
at infinity, and the polar of a point at infinity is defined as the diameter
perpendicular to the parallel lines passing through that point.

Now we mention some important properties of the polar correspondence.
1. If a point B lies on the polar a of a point A, then its polar b passes
through A.

Proof. Suppose A’ and B’ are the inverses of A and B with respect to our
circle. Then the triangle OA’B is obviously similar to the triangle OB’A,
and therefore AB’O is a right angle, i.e., A lies on b (Figure 2.9). O

FIGURE 2.9

This implies that the pole of any line is the intersection of the polars of
all of its points and, dually, the polar of a point is the locus of the poles of
all the lines passing through the point.

2. The polar of a point A lying outside the circle will be the line con-
necting the tangency points of the circle and its tangents passing through
A (the tangency points are the poles of the corresponding tangents). It now
follows that, despite the metric properties mentioned in the definition, the
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polar correspondence is a projective notion, i.e., if a projective transforma-
tion preserves the given circle and sends A to A’, then the polar a of A
transforms into the polar a’ of A’. This yields the following result.

The duality principle. If an assertion from projective geometry is
true, then the assertion obtained from it by interchanging the terms (point)
+ (line), (to lie on a line) «> (to pass through a point), (to lie on a circle)
+ (to be tangent to a circle) is also true. As examples of the duality
principle we mention the theorems of Pascal and Brianchon, the direct and
the converse assertions in Desargues’ theorem, etc.

Using the duality principle we can also prove property 5. It suffices,
using property 6, to move the polar of C to infinity. Then, obviously, C will
transform into the center of the circle.

3. The line connecting the intersections of the opposite sides of an
inscribed (circumscribed) quadrilateral is the polar of the intersection of its
diagonals.

This follows from property 1 of polar correspondences and Newton’s the-
orem: The diagonals of a circumscribed quadrilateral pass through the point
of intersection of the lines connecting the tangency points of the opposite
sides and the inscribed circle. This theorem is a special case of Brianchon’s
theorem.

4. The cross-ratio of four points on a line equals the cross-ratio of their
polars.

Proof. Let A, B, C and D be the four points. Then the cross-ratio of this
quadruple equals the cross-ratio of the lines OA, OB, OC and OD, which
in turn equals the cross-ratio of the lines OA’, OB’, OC’ and OD’, where
A', B, C', D’ are the projections of O to the polars of A, B, C and D,
respectively. Let P be the pole of the line AB. Then A’, B/, C’, D', O and
P lie on a circle (with diameter OP). Therefore (PA’, PB'; PC',PD’) =
(OA,OB';0C’,0D') = (A, B;C, D). But PA', PB', PC' and PD' are the
polars of A, B, C and D. a

Problem 8. Points A;, B; and C; lie on the sides of a triangle ABC so
that AA;, BB; and CC intersect at a point P. Let C’ be the intersection
of A1B; and AB. Points A’ and B’ are defined similarly. Prove that A/, B/
and C’ lie on a straight line.

The constructed line is called the trilinear polar of P with respect to the
triangle ABC, whereas P is called the trilinear pole of the line.

Problem 9. A line intersects a hyperbola at points P and @ and its asymp-
totes at points X and Y. Prove that the segments PX and QY are equal
(Figure 2.10).

Problem 10. Two parallel lines intersect a parabola at points A, B and
C, D respectively. Prove that the line connecting the midpoints of those
segments is parallel to the axis of the parabola (Figure 2.11).
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FIGURE 2.10

.

FIGURE 2.11

Problem 11. Given a circle, choose a point C inside (outside) it. Draw four
chords (secants) A;B;, ¢ = 1,...,4 through C. Let D be the intersection
of the lines A;As and A3A4, and E the intersection of the lines By By and
Bs3Bjy. Prove that C, D and F lie on a straight line (Figure 2.12).

B,

FIGURE 2.12

Problem 12. Circles that are tangent to a pair of conjugate diameters! of
an ellipse and have their centers lying on that ellipse are of equal radii.

Problem 13. The ends of a segment BC' are sliding along two lines inter-
secting at a point A in such a way that the length of the segment remains

!Two diameters of an ellipse are conjugate if each is parallel to the tangents to the
ellipse at the ends of the other.
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constant. Prove that the trajectory of any fixed point P on BC is an ellipse
(Figure 2.13).

FIGURE 2.13

Problem 14. The sides of a triangle ABC contain six points: A;, A2 on
BC, By, B on AC and C, C3 on AB. Prove that these six points lie on a
conic if and only if

BA; - BA; ' CB; -CB, . AC,-ACy 1

CA;-CA;, AB;-ABs BC;-BC, '
Here the ratios are signed. For each expression, the positive direction is the
one from a vertex to the other vertex of the underlying side.

2.3. Some facts from the geometry of the triangle

In this section we consider some very useful but not very well known prop-
erties of the triangle. These are mainly related to isogonal and isotomic
conjugation but we shall also mention some other beautiful results not di-
rectly related to the subject of this book.

FIGURE 2.14

Definition. The pedal triangle of a point P with respect to a triangle ABC
is formed by the vertices which are the projections of P to the sides of ABC.
The circumcircle of the pedal triangle is called the pedal circle of P with
respect to the triangle ABC (Figure 2.14).
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Theorem 2.6. The pedal triangle degenerates (i.e., the projections lie on a
line) < P lies on the circumcircle of the triangle ABC.

(This is just a reformulation of Simson’s lemma.)

Definition. The Ceva triangle of a point P with respect to a triangle ABC
is formed by the vertices which are the intersections of the lines AP and
BC, BP and AC, CP and AB. The circumcircle of a Ceva triangle is called
the Ceva circle of P with respect to the triangle ABC (Figure 2.15).

FIGURE 2.15

We shall discuss properties of Ceva triangles later. At the moment we
define the circumcevian triangle.

Definition. The circumcevian triangle of a point P with respect to a trian-
gle ABC is formed by the vertices which are the second intersections of the
lines AP, BP, CP with the circumcircle of the triangle ABC (Figure 2.16).

FIGURE 2.16

Lemma 2.5. The pedal and the circumcevian triangles of P with respect to
a triangle ABC are similar and have the same orientation.
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Proof. We consider the case shown in Figure 2.17. The remaining cases are
proved similarly.

The points P4, P, Pc are the vertices of the pedal triangle, and A/,
B’, C' are the vertices of the circumcevian triangle. We have ZAA'C' =
LACC' = /PgP4P. The latter equality holds since the quadrilateral
PP4CPg is inscribed. Similarly, ZAA'B' = ZPgPsP. Therefore ZC'A'B’
= /PgP4Pc. Similarly, ZA'B'C’ = /PsPgP¢ and LA'C'B’' = /P4P¢Pg.
But this means that the triangles A’B'C’ and P4PgPc are similar. O

FIGURE 2.17

Theorem 2.7. The circumcevian triangles of the points inverse to each
other with respect to the circumcircle of the triangle are similar and have
different orientations.

First we prove a lemma.

Lemma 2.6. Suppose points P and Q are inverse to each other with respect
to a circle w centered at O and the segment PQ intersects w at a point R.
Then for any point A on w, RA is the bisector of the angle PAQ.

Proof. Since P and @ are inverse to each other, the triangles OAP and
OQA are similar (Figure 2.18), and therefore ZOQA = ZOAP. Since O is
the center of w, the triangle AOR is isosceles and therefore Z/OAR = ZORA.
Thus

/PAR = Z/OAR - ZOAP = ZORA - ZOQA = ZRAQ,

as desired. O
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FIGURE 2.18

This lemma implies that w is the locus of points at which the ratio of
the distances to P and @ is constant (and different from 1). The circle w is
called the Apollonius circle of the segment PQ. We shall say more about it
later on.

Proof of the theorem. Suppose P and @ are inverse to each other with
respect to the circumecircle (call it w) of the triangle ABC and that PQ
intersects w in R. Let A’ and A” be the second intersection points of AP
and AQ, respectively, with w. By Lemma, 2.6, the line AR is the bisector of
the angle PAQ and therefore R cuts the arc A’A” in half, i.e., A’ and A” are
symmetric with respect to OP. The same is true for the pairs B’ and B”,
C’ and C”, which are the vertices of the circumcevian triangles of P and Q
with respect to the triangle ABC. Thus the symmetry with respect to PQ
interchanges the triangles, and therefore they are similar and have opposite
orientations. a

Corollary. The pedal triangles of inverse points are similar and have dif-
ferent orientations.

One can show that for any triangle XY Z there is a unique point such
that the pedal triangle of that point with respect to a given triangle ABC
is similar to the triangle XY Z with a fixed order of the vertices.

In the proof of the preceding theorem we had two similar triangles and a
point P inside them such that the angles formed by the sides and the Ceva
lines of P are equal but in a sense interchanged (see Figure 2.17).

Thus we have the so-called isogonal conjugation with respect to a trian-
gle.

Let ABC be an arbitrary triangle and P a point different from the
vertices of the triangle. Reflect the lines connecting the vertices of the
triangle with P in the bisectors of the corresponding angles of the triangle.
It turns out that these three lines always intersect in a single point (or are
parallel, i.e., intersect in a single point of the projective plane), which we
denote P’ (Figure 2.19). The point P’ is called the isogonal conjugate of P
with respect to triangle ABC; the transformation sending each point of the
projective plane to its isogonal conjugate is called the isogonal conjugation.

That the above concept is well defined was almost proved in Theorem 2.7.
Indeed, given a triangle ABC and a point P, let A’B’C’ be the circumcevian
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FIGURE 2.19

triangle of P with respect to the triangle ABC. Then ABC is the circum-
cevian triangle of P with respect to the triangle A’B'C’ and therefore is
similar to the pedal triangle of P with respect to A’B'C’. Therefore the
image of P under the similarity transforming the pedal triangle of P into
the triangle ABC will be P, which is exactly the isogonal conjugate.

Now we mention several elementary properties of the isogonal conjuga-
tion.

1. If P does not lie on the sidelines of the triangle, then P’ is determined
uniquely and the isogonal conjugate of P’ will be P. Such two points are
said to be isogonally conjugate.

2. The isogonal conjugate of a point on a sideline of the triangle is the
vertex of the triangle opposite to the respective side.

3. The isogonal conjugation leaves exactly four points of the plane
fixed—these are the centers of the incircle and of the three excircles of the
triangle.

4. If P lies on the circumcircle of the triangle ABC, then the isogonal
conjugate of P is the point on the line at infinity in the direction perpen-
dicular to Simson’s line of P with respect to ABC (i.e., the line passing
through the projections of P to the sides of the triangle ABC).

FIGURE 2.20

The first three properties are obvious. To prove the fourth, consider the
case shown in Figure 2.20; the remaining cases are argued similarly. Suppose
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P lies on the circumcircle and P, and P, are the projections of P to the
sides AC and AB, respectively. Let X be the intersection of Simson’s line
of P and the line a which is the reflection of AP in the bisector of ZA. The
quadrilateral APP,P, is inscribed and therefore ZAP,P, = 180°—~ ZAPP, =
180° — (90° — LPAPy) = 90° + LPAP, = 90° + X AP,. But since an exterior
angle equals the sum of the two interior angles of the triangle, ZAX P, = 90°.
A similar proof shows that the reflections of PB and PC in the bisectors of
the corresponding angles are perpendicular to P,P,.

The existence proof just given for isogonal conjugation does not readily
indicate any of its properties. We shall now give another method for con-
structing isogonally conjugate points, which would immediately lead us to
some nice properties of this transformation.

Fi1GURE 2.21

Suppose a point P lies inside a triangle ABC' and let P, be its reflection
in the side BC; points P, and P, are defined similarly (Figure 2.21). Let
P’ be the center of the circumcircle of the triangle P,P,P.. The point
C is equidistant from P, and P,; therefore the line CP’ is the midpoint
perpendicular to the segment P,P,. Hence /P,CP = %ZPaCPb = £C.
But then /BCP' = /P,CP' — /BCP, = LC — /BCP = ZACP. A
similar argument shows that ZABP' = Z/CBP and /BAP' = ZCAP. But
this means that P’ is isogonally conjugate to P with respect to ABC.

If P is outside the triangle, then the argument is identical, but if P
lies on the circumcircle of the triangle ABC, then the triangle P, PP, is
degenerate. In this case the center of the circumcircle of the triangle P, P, P,
is not defined (although it would be natural to view the line P, P, as the
circumcircle, the center being the point on the line at infinity in the direction
perpendicular to P,P,).

The second method for constructing isogonally conjugate points shows
that the center of the pedal circle of P is the midpoint of the segment
PP’ and its radius is half of the segment P’P,, since the pedal circle of P
is the circle obtained from the circumcircle of the triangle P,P,P. by the
homothety with center P and coefficient 1.
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This also implies the following theorem.

Theorem 2.8. The pedal circles of two points coincide if and only if the
points are isogonally conjugate.

Proof. Indeed, if P and P’ are isogonally conjugate, then the pedal circle
for each of them is the circle centered at the midpoint of PP’ of radius
L =Fh 5 where P, and P, are the reflections of P and P’ in the side BC
of the triangle ABC.

Now we prove the converse. If the pedal circles of P and @ coincide, then,
by the above, they coincide with the pedal circle of the isogonal conjugate
P’ of P. By the Dirichlet principle, two out of three vertices of the pedal
triangle of Q are common with the pedal triangle of either P or P’. Therefore
Q coincides with one of those points, because the projections of a point to
two lines completely determine the point.

B
H
(o)
A c
FIGURE 2.22

As a direct consequence of this theorem, we see that the orthocenter H of
the triangle ABC is isogonally conjugate to the center O of the circumcircle.
Indeed, the pedal circles of H and O coincide with the nine-point circle. Of
course, this can be proved directly by examining the angles. Consider the
case shown in Figure 2.22; the remaining cases can be argued similarly. We
have ZBAH = 90° — /B, but ZAOC = 2/B, hence ZOAC = 1(180° —
2/B) = 90° — ZB. It now follows that ZBAH = ZOAC, but this means
that the reflection of AH in the bisector of the angle A is the line AO. For
the other two angles the proof is similar. a

Let K,, K and K, be the intersections of the lines BC and P'P,,
AC and P'P,, AB and P'P,, respectively. Clearly, /ZPK,B = /P'K,C.
Therefore the conic with foci P and P’ and the sum (or the modulus of the
difference, in the case of a hyperbola) of distances to the foci equal to P'P,
is tangent to the line BC. Similarly, the conic is tangent to the other two
sides of the triangle since the distances PP, = P'P, = P'P, equal twice the
radius of the pedal circle of P. In Figure 2.23, the shaded regions consist of
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the points where the corresponding conics are hyperbolas, and in the clear
regions the conics are ellipses. The points of the circumcircle correspond to
parabolas.

4 4

FIGURE 2.23

If P and Q are isogonally conjugate in a polygon (i.e., for any vertex
X of this polygon the lines X P and X@Q are symmetric with respect to the
bisector of the angle X'), then there is a conic tangent to all the sides of the
polygon with foci at those points. The converse is also true, i.e., if a conic
is inscribed in a polygon, then its foci are isogonally conjugate with respect
to that polygon. Similarly one can show that in this case the pedal circles
of P and @ coincide (in addition to the fact that they exist!).

In the next section we shall show that for any five lines there is a unique
conic tangent to those lines. Hence a pentagon contains only one pair of
isogonally conjugate points. It is easy to see that for a quadrilateral such
points form a curve (actually, it will be a cubic, i.e., a curve of order three),
and for hexagons (and polygons with a larger number of sides) such points,
in general, do not exist.

Using isogonal conjugation one can easily prove Pascal’s theorem in a
rather general form.

Theorem 2.9 (Pascal). Suppose points A, B, C, D, E and F lie on a
conic. Then the intersections of the lines AB and DE, BC and EF, CD
and FA lie on a line.

Proof. We consider only one case of the relative positions of the points on
the circle (or a conic). The other cases are treated similarly.

Using a projective transformation we can transform the conic into a
circle. We then have the following configuration (Figure 2.24).

The points A, B, C, D, E and F lie on a circle. Suppose the lines AB
and DE intersect at X, the lines BC and EF at Y, and AF and CD at Z.
We want to show that X, Y and Z lie on a straight line.
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FiGURE 2.24

The angles BAF and BCF are equal since they subtend the same arc.
Similarly, the angles CDE and CFE are equal. Moreover, the triangles
AZD and CZF are similar. Consider the similarity transforming triangle
AZD into triangle CZF. Then X will transform into X', which is isogonally
conjugate to Y with respect to the triangle CZF (in view of the equality of
the above angles). Therefore LZAZX = /CZX' = LFZY, but this means
that X, Z and Y lie on a line. O

Now we describe a few more pairs of isogonally conjugate points.

1. The centroid and the Lemoine point. The lines symmetric
to the medians with respect to the bisectors of the corresponding angles,
are called the symmedians. The point of intersection of the symmedians is
obviously isogonally conjugate to the intersection point of the medians and
is called the Lemoine point.

We now list several basic properties of the Lemoine point, which are
somewhat similar to the properties of the centroid.

la. Suppose the tangents to the circumcircle of a triangle ABC at B
and C intersect at A;. Then AA; is the symmedian of the triangle ABC
(Figure 2.25).

FIGURE 2.25
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Indeed, the midpoint M, of the side BC is the inverse of A; with respect
to the circumcircle of the triangle ABC. Hence the foot of the bisector of
the angle M,AA,; is the midpoint of the arc BC, i.e., this bisector coincides
with the bisector of the angle BAC. But then the line AA; is symmetric to
the median AM, with respect to the bisector of the angle A.

Another elegant proof of this fact is based only on the existence of iso-
gonal conjugation. We just identify the isogonal conjugate of A;. This is
the point symmetric to A with respect to M,. It clearly lies on the median
AM, (we denote it A’; see Figure 2.26). It is not difficult to check that the
reflections of the lines BA’ and CA’ in the bisectors of the corresponding
angles are tangent to the circumcircle. Therefore A’ transforms into A;.

FIGURE 2.26

This theorem implies that a symmedian can be constructed with a
straightedge, provided the circumcircle of the triangle is given. Projective
transformations fixing the circumcircle of a triangle ABC' take the symme-
dians into the symmedians and the Lemoine point into the Lemoine point.
This is in a sense similar to the fact that affine transformations transform
the centroid of a triangle into the centroid of the image triangle.

As a consequence, we have that the Lemoine point is the Gergonne
point (see below) of the triangle A; B;Cy, where B; and C; are constructed
similarly to Aj.

1b. A symmedian cuts the side in the ratio equal to the ratio of the
squares of the adjacent sides.

Let L, be the intersection of the symmedian of the angle A and the side
BC, and M, the midpoint of BC.

Since the areas of the triangles ABM, and ACM, are equal, the ratio of
the distances from M, to AB and AC is inversely proportional to the ratio
of these sides. But since the line AL, is the reflection of AM, in the bisector
of the angle A, the product of the ratios of the distances from M, and L,
to AB and AC equals 1. Therefore the ratio of the distances from L, to
AB and AC equals the ratio of the lengths of these sides, and therefore the
areas of the triangles ABL, and ACL, have the same ratio as the squares
of AB and AC. On the other hand, this ratio equals the ratio of BL, and
CL, since these triangles have a common height.
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lc. The sum of the squared distances from a point P to the vertices of
a triangle attains its minimum when P is the intersection of the medians.
The sum of the squared distances from P to the sides attains its minimum
at the Lemoine point.

It is not difficult to see that this statement can be deduced from the
previous one.

2. Brocard points. It turns out that inside any triangle ABC there
is a point Br; such that /BABr; = ZCBBr; = ZACBr;. If Bry is the
isogonal conjugate of Bry, then obviously ZABBry = ZBCBry = ZCABrs
(Figure 2.27).

FIGURE 2.27

These two points are called the first and the second Brocard points,
respectively. The ellipse tangent to the sides of the triangle and having foci
at these points is called the Brocard ellipse. For an equilateral triangle these
two points coincide with the center of the triangle and the ellipse coincides
with the incircle.

We now prove the existence of Br;. Using the sides of the triangle,
construct the triangles BCA;, BiCA, BC; A similar to it as shown in Fig-
ure 2.28.

Then the circumcircles of these triangles (call them w,, wy and w;) in-
tersect in a point. Indeed, let Br; be the intersection of the circles w, and
wp different from C. Then

ZABrB = 360° — (AABnC + ZBBf'lC)

= 360° — (180° — LAB;C) — (180° — ZBA;C)
=/BAC+ /ZAB.C=/4C+ ZA
=180° — /B = 180° — ZAC, B.

Therefore Br; lies on w.. We also have

/CBBry = 180° — /BBriC — /BCBry = /BA,C — £ZBCBr;
=/BCA - /BCBr; = LZACBr;.
Similarly, Z/CBBr, = ZBABr;.
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B

FIGURE 2.28

That such a point is unique can be easily seen from the construction.
Indeed, suppose that there is another such point X. Then a similar argument
shows that /BXA = 180° — /B, and therefore X lies on the circle w.
Similarly, it has to lie on the circles w, and wyp, and therefore it coincides
with Br;.

The angle BABr; is called the Brocard angle of the triangle ABC.

Notice also that the points A, Br;, A; lie on a line. Indeed,

/ABriAy = LABriC + ZCBriA; = 180° — ZAB,C + ZCBA;
=180° - LA+ ZA = 180°.

The Brocard points have some interesting properties.

2a. The pedal and the circumcevian triangles of the Brocard points are
similar to the triangle ABC.

Let A’, B’ and C’ be the projections of Br; to the sides (Figure 2.29).
The quadrilateral B’AC’'Bry is inscribed, hence ZC'B'Bry = ZC'ABr; =
ZACBr; (the last equality holds because Br; is the Brocard point). Simi-
larly, ZA'B'Bry = ZA'CBr;. Hence ZA'B'C' = LA'B'Br; + ZC'B'Br; =
LA'CBri+/ACBr; = ZC. A similar argument shows that Z/B'A'C’' = /B
and ZA'C'B’' = ZA. Since the pedal triangle is similar to the circumcevian
triangle, the circumcevian triangle of Br; is similar to the triangle ABC.

2b. Let O be the center of the circumcircle of the triangle ABC. Then
OBr; = OBry and ZBri0Bry equals twice the Brocard angle.
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FIGURE 2.29

Let A”B"C" be the circumcevian triangle of Br; with respect to the
triangle ABC (Figure 2.30).

BII

FIGURE 2.30

Notice that under the rotation about O through the double Brocard
angle, A transforms into C”. The same is true for B and C. Therefore, under
the rotation about O, the triangle ABC will transform into the triangle
C"A"B". Then Br; will be the second Brocard point of the triangle A” B"C”
(LC"A"Bry = LC"A"A = LC"CA = £LBriCA).

Therefore, under the rotation about O through the double Brocard an-
gle, Bre will transform into Br;.

2¢c. The Lemoine point lies on the circumcircle of the triangle ABriBrs
and is antipodal to O.

Consider a projective transformation putting the point Br; at the center
of the circle w circumscribed about the triangle ABC. The triangles ABC
and A” B"C" will clearly transform into the triangles symmetric with respect
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to the center of w, and therefore their Lemoine points will also be symmetric.
On the other hand, these points will be the images of the Lemoine points of
the triangles ABC and A”B”C"”, hence L, Br; and L” lie on a line, where
L” is the Lemoine point of A”B”"C”. Moreover, since the triangles ABC
and A” B”"C" can be obtained from each other by rotation through twice the
Brocard angle about O, the points L and L” are equidistant from the ends
of the chord passing through them. This, together with the preservation
of the cross-ratio under projective transformations, implies that Br; is the
midpoint of the segment LL"” and that the angle OBr; L is right. Therefore
Bry, and Brs lie on the circle with diameter OL and are symmetric with
respect to the line OL.

2d. The Brocard ellipse is tangent to the sides of the triangle formed by
the feet of the symmedians.

Suppose triangles BCA; and C2AB are similar to ABC and are posi-
tioned as in Figure 2.31.

FIGURE 2.31

Let w! and w? be their circumcircles. Since Bry and Bro lie on w} and
w2, respectively, and the angles subtending the arcs CBr; and ABr; are
equal, the ratio of the segments CBr; and ABry equals the ratio of the
radii of w} and w2. On the other hand, the ratio of those radii equals the

similarity coefficient of the triangles BC'A; and C2AB, and therefore equals

BC _BC AB _(BC\* _CL,

AC;, ~ AB AC, \AB) = ALy
ie., %% = i—ﬁ. And since ZBriCA = ZBryAC (the Brocard angles),
the triangles CLyBr; and ALyBry are similar. Therefore ZBriLyC =
/BroLyA. Hence the ellipse with foci at the Brocard points and sum
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BriLy + BraLy of the distances to the foci is tangent to the line AC at
L. But such an ellipse is unique, and this is the Brocard ellipse.

That the Brocard ellipse is tangent to AB and BC at L. and L, is
proved similarly.

3. The Steiner ellipse and the roots of the derivative. To each
point on the plane with Cartesian coordinates (a, b) we associate the complex
number a + ib.

Theorem 2.10. Let p and q be the roots of the derivative of the polynomial
P(2) = (2 — z4)(2 — 20)(z — 2c). Then the points of the complex plane
corresponding to p and q are isogonally conjugate with respect to the triangle
ABC whose vertices correspond to the numbers z4, 2y, 2.

Proof. We prove that ZBAP = ZCAQ, where the points P and @ corre-
spond to p and q. Without loss of generality we may assume that z, = 0,
since subtracting 2, from z,, 2, and 2. we will change the roots of the de-
rivative of P(2) by —z,. Geometrically, this corresponds to the translation
by the vector —z,.

The polynomial P(z) will then become 23 — (2 + 2.)2% + 2,252 with
derivative 322 — 2(zp + 2.)z + 2p2.. By Viete’s theorem, the product of the
roots of P'(z) equals %zbzc. This means that the product of z; and z. has
the same argument as the product of p and ¢, whence Z/BAx + LC Az =
/PAx + ZQAx. Therefore the angles ZBAP and ZCAQ are equal. A

similar proof shows that ZABP = ZCBQ and LACP = ZBCQ. O
2p
go
op °M
# #
2a 2
FIGURE 2.32

The ellipse with foci at those points and tangent to the sides of the
triangle ABC is called the inscribed Steiner ellipse (Figure 2.32).

We prove that its center coincides with the centroid of the triangle. The
centroid corresponds to %(za + 2 + 2.), whereas the centroid of P and Q
corresponds to %(p+q). We have P'(z) = 32% —2(24 + 2+ 2¢) 2 + 24 2p2¢, and
therefore, by Viéte’s theorem, the sum of the roots of the derivative equals
%(za + 2p + 2¢), i.e., their centroid is %(za + 2zp + 2c), which is what was to
be proved.

Remarks. 1. Actually any polynomial of degree greater than one has
the above property: the centroid of the roots of the polynomial and the cen-
troid of the roots of its derivative coincide. The easiest way to prove this is to
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move the centroid to 0. Then the second coefficient of the polynomial, and
therefore the second coefficient of its derivative, will vanish; hence the sum
of the roots of the derivative (and therefore the centroid) will be zero, i.e.,
the centroid will coincide with the centroid of the roots of the polynomial.

2. Consider an affine transformation transforming an equilateral triangle
into the triangle ABC. Then the incircle of the triangle will become an
ellipse and the center of this ellipse will be the centroid of the triangle
ABC. As we will show in Chapter 4, there is a unique conic tangent to the
three given lines, with center at a given point. Therefore this will be the
Steiner ellipse.

Since in an equilateral triangle the tangency points of the incircle are
the midpoints of the sides, the Steiner ellipse will also be tangent to the
sides of ABC' at their midpoints.

Similar to the inscribed Steiner ellipse is the circumscribed Steiner el-
lipse; this is the ellipse that passes through the vertices of the triangle and
has its center at the intersection point of the medians. It is the image of the
circumcircle of an equilateral triangle under the affine transformation that
sends it to the triangle ABC.

4. The points of Apollonius and Torricelli. Given a triangle ABC,
the locus of points P such that % = % is the Apollonius circle of the
points A and B that contains the feet of the internal and external bisectors
of the angle C as antipodal points. For points Py, P, the intersections of
this circle with the similar circle constructed using another pair of vertices,
we have P,A- BC = P,B- AC = P,C - AB, hence the points P; lie also on
the third such circle. They are called the Apollonius points of the triangle
ABC. Henceforth we shall denote these points Ap; (the first Apollonius
point is usually taken to be the one inside the circumcircle) and Ap,. Ex-
amining the angles we see that the Apollonius circles are orthogonal to the
circumcircle of ABC. Hence the inversion with respect to the circumcircle
preserves those circles and transforms the Apollonius points into each other.
In particular, the line Ap; Aps passes through the center O of the circum-
circle. Furthermore, the center of the Apollonius circle passing through C
is the intersection of the line AB with the tangent to the circumcircle at C.
Under the polar correspondence with respect to the circumcircle, these lines
correspond to the intersection point of the tangents to it at A and B and
the point C. Therefore the polars of the centers of the Apollonius circles
are the symmedians, and the pole of the line containing those centers is the
Lemoine point L. Thus L also lies on the line Ap; Aps and is the inverse of
the midpoint of the segment Ap; Aps with respect to the circumcircle.

We now mention an important property of the Apollonius points which
can be taken as their definition.

The pedal triangles of the Apollonius points are equilateral.

Proof. Let A’, B’ be the projections of Ap; to BC and CA. Since the
quadrilateral CA’Ap; B’ is inscribed in the circle with diameter Ap;C, we
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have A'B’' = Ap;CsinC = Ap;C - AB/2R. This implies at once that all the
sides of the pedal triangle are equal. O

It is now easy to see which points are isogonally conjugate to the Apol-
lonius points. Indeed, the perpendiculars dropped from A and B to the
corresponding sides of the pedal triangle intersect at a point T; that is the
isogonal conjugate of Ap;. Since the pedal triangle is equilateral, the angle
AT;B equals either 60° or 120°. Thus, at T;, all the sides of the triangle
are seen at angles 60° or 120°. The points with this property are called the
Torricelli points of the triangle ABC. They can be constructed as follows:
let A’, B’ and C’ be the vertices of the equilateral triangles based on the
sides of the triangle ABC and pointing outside (inside). Then the lines AA’,
BB’ and CC' intersect at the first (second) Torricelli point (Figure 2.33).

Cl

FIGURE 2.33

If the angles of the triangle are less than 120°, then the first Torricelli
point lies inside the triangle and the sum of the distances from that point
to the vertices is less than from any other point X in the plane. This can
quickly be checked by turning the triangles AXC and AT;C through 60°
about A (Figure 2.34).

We now mention without proof three more properties of the Torricelli
and Apollonius points.

1) The lines ApyT1 and ApsT5 are parallel to the Euler line OH;

2) The line Ty T, passes through the Lemoine point, which implies, as we
will show in 3.3, that the lines Ap1T> and ApsT\ intersect at the centroid of
the triangle ABC,

3) ZApBrL = 60° (the indexing plays no role since Ap;, Aps and L lie
on a line with respect to which Br; and Bry are symmetric); in particular
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FIGURE 2.34

this means that the triangle OBriBry has the same Apollonius points as the
original triangle.

5. The Gergonne and Nagel points and the homothety centers
of the circumcircle and the incircle.

Definition. Suppose the incircle of a triangle ABC is tangent to the sides
at points G4, Gp and G.. Then the lines AG,, BG} and CG, intersect in a
single point G (this can be shown with the aid of Ceva’s theorem or by using
a projective transformation preserving the incircle and transforming the
intersection of the lines AG, and BG, into the center), called the Gergonne
point.

Draw the reflections of AG, and BG)} in the bisectors AI and BI and
find their intersection points A;, B; with the incircle on the other side of A
and B (Figure 2.35). We have

LG JA; = LG Gy + £LGoIA; =180° — LB +2 (AB + —;—A - 90°)
=/A+ /B =/GIB.

Therefore A;B; || AB. Similarly, the reflection of CG. in CI intersects
the incircle at the point C; such that C14; || CA and C1B; || CB. Thus
triangles ABC and A; B,C); are homothetic with respect to the isogonal
conjugate of G. Under this homothety, the circumcircle of ABC transforms
into the incircle, and therefore we have the following result.

The Gergonne point is isogonally conjugate to the inner center of homo-
thety of the circumcircle and the incircle of the triangle.

Similarly, if we connect the vertices of the triangle and the tangency
points of the opposite sides and the excircles, we obtain lines intersecting in
a point, called the Nagel point. Repeating the above arguments, we have

The Nagel point is isogonally conjugate to the outer center of homothety
of the circumcircle and the incircle of the triangle.



56 2. SOME RESULTS FROM CLASSICAL GEOMETRY

FIGURE 2.35

Besides isogonal conjugation with respect to a given triangle, one can
also define the so-called isotomic conjugation, which is constructed as fol-
lows.

FIGURE 2.36

Definition. Suppose lines AP, BP, CP intersect the opposite sides of a
triangle ABC at points A;, By, Cy, and let A2, By, Cs be the reflections
of Aj, By, Cy in the midpoints of the corresponding sides. Then the lines
AAs, BBy, CC, intersect at a single point P’, called the isotomic conjugate
of P with respect to the triangle ABC (Figure 2.36).

As in the case of isogonal conjugation, a vertex of the triangle is isotom-
ically conjugate to any point of the opposite side. In all other cases isotomic
conjugation is bijective.

The fixed points of isotomic conjugation are the centroid of the trian-
gle and the reflections of the vertices in the midpoints of the opposite sides.
Notice also that isotomic conjugacy of points is preserved under affine trans-
formations.

Among other properties of isotomic conjugation that are worth men-
tioning is the fact that the Gergonne point is isotomically conjugate to the
Nagel point.
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2.4. Radical axes and pencils of circles

Definition. Given a circle with center O and radius r and a point P, the
quantity OP? — 2 is called the power of P with respect to the circle.

The definition implies at once that the power is positive for outer points
and negative for inner points.

Exercise 1. Find the locus of points of constant power with respect to a
given circle.

Answer. Points of equal power with respect to a circle w form a circle
concentric with w.

Lemma 2.7. Suppose a line passing through P intersects the circle in X
andY. Then PX - PY does not depend on the line and equals the absolute
value of the power of P with respect to the circle.

Proof. Suppose we have two lines passing through P such that the first
intersects the circle at points A and B and the second at points C' and D.
We prove that PA- PB = PC - PD. Clearly, the triangles PAC and PDB
are similar and therefore

PA PD

PC  PB
It remains to show that this quantity equals the absolute value of the power
of P with respect to the circle. Draw a line through the center of the
circle. Then the product of distances from P to the intersection points
equals (OP + ) - (OP —r) (where O is the center of the circle and r its
radius). But this product obviously equals OP? — r2. a

= PA-PB=PC-PD.

Exercise 2. Suppose the segments AB and CD intersect at a point P and
PA-PB = PC - PD. Prove that the quadrilateral ABCD is inscribed.

Solution. Since PA-PB = PC-PD, the triangles PBD and PC A are sim-
ilar and therefore ZPBD = ZPCA. But this means that the quadrilateral
ABCD is inscribed.

Lemma 2.7 is needed, in particular, for the proof of the following impor-
tant theorem.

Theorem 2.11. The set of points whose powers with respect to two given
nonconcentric circles are equal is a line. This line is called the radical axis

of the circles.

Proof. Suppose that the two circles intersect. Draw the line through the
intersection points. We claim that this line is the radical axis. Suppose the
circles intersect at points A and B. Take an arbitrary point P on the line
AB. Then the absolute value of the power of P with respect to the two
circles equals PA - PB and the signs obviously coincide.

There are no other points with this property. Draw the line through A
and an arbitrary point X not lying on the line AB. Then, as is easy to see,
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either the distances from X to the other intersections with those circles are
distinct (and therefore the absolute values of the powers are not equal) or
the signs of the powers of points are distinct.

Now we prove the theorem in the case where the circles have no com-
mon points. To that end, we apply a useful trick. Consider two spheres
intersecting our plane along the two circles and having common points. It
is easy to see that such spheres exist. Indeed, take a point not in the plane
and the spheres passing through that point and the two circles. For spheres,
the power of a point can also be defined, and Lemma 2.7 is still true. A
similar argument shows that the set of points whose powers with respect to
the two spheres are equal is the plane passing through the intersection circle
of the spheres (see Figure 2.37). That plane intersects our plane along a line
which is obviously the radical axis of our circles. 0

FIGURE 2.37

Suppose now that three circles are given. If their centers are not on a
line, then there are two pairs of those circles whose radical axes intersect.
The powers of their intersection point with respect to all three circles are
equal and therefore the third radical axis also passes through that point,
called the radical center of the three circles. If the centers of the circles are
on a line, then the radical axes are either parallel or coincide. In the latter
case the circles are said to be coazial.

The set of all circles coaxial with two given circles is called a pencil.
If the circles defining the pencil intersect at two points, then the pencil
consists of all circles passing through these points. Such a pencil is said to
be hyperbolic. If the two circles are tangent, then any circle of the pencil is
tangent to their common tangent line at the same point. Such a pencil is
said to be parabolic. Finally, two nonintersecting circles give rise to a pencil
of the type shown in Figure 2.38. Such a pencil is said to be elliptic. Notice
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that two of the circles of an elliptic pencil degenerate into points, called the

(N )
w

FIGURE 2.38

For any point on the radical axis which is outside the circles, the tangents
to the circles of the pencil passing through that point are equal. Hence
the circle centered at that point with radius the length of the tangent is
perpendicular to all the circles of the pencil. All such circles form another
pencil (Figure 2.39), and any two of them uniquely determine the original
pencil. It now follows that the inversion in an arbitrary circle transforms
pencils into pencils; moreover any pencil containing the circle of inversion
transforms into itself. In particular, the limit points of an elliptic pencil
transform into each other under inversion in any circle of that pencil. Notice
also that the inversion centered at a limit point transforms the circles of the
perpendicular pencil into lines. Therefore the original pencil is transformed
into a pencil of concentric circles.

FIGURE 2.39

Exercise 3. Prove the last assertion by passing to three-space.

Solution. Consider the intersecting family of spheres which intersect our
plane along the circles of the pencil. Those spheres also form a pencil.
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Under inversion those spheres transform into spheres intersecting along a
circle. Therefore they will intersect our plane along a pencil.

Pencils of circles have yet another very important property.

Theorem 2.12. Given two circles wy and ws, the locus where the ratio of
powers with respect to those two circles is constant is a circle belonging to
the pencil formed by w1 and ws.

FIGURE 2.40

Proof. Suppose that w; and ws intersect at A and B (Figure 2.40). Let Oy
and O be their centers and, respectively, r; and ro their radii. Let A; and
A3 be the reflections of A in O; and Oz. We shall show that the set of points
X whose powers with respect to w; and w; equal k is a circle. Suppose the
line X A intersects w; and we at X; and Xa, respectively. Then k equals
% (with an appropriate sign). Since AA; and AAj are diameters of the
corresponding circles, the angles AX;A; and AX3A; are right and therefore
X and X5 are the projections of A; and As to the line AX. Let P be the
point on Aj; Az such that ;—ﬁ; = k (there are two points for which this ratio
equals |k|; choose the one with the “appropriate” sign). Then, by Thales’
theorem, X is the projection of P to the line AX and therefore it lies on the
circle with diameter AP. Reversing the argument, it is easy to show that
for any point on that circle the ratio of the powers with respect to w; and
wo equals k.

To prove this assertion for nonintersecting circles, we switch again to
three-space. Suppose we are given two intersecting spheres intersecting our
plane along the two circles. Using the arguments as above we show that the
locus where the ratio of the powers with respect to the two spheres equals k
is a sphere from the pencil, i.e., a sphere containing the circle of intersection
of the two spheres. The intersection of that sphere with our plane is a circle
from the pencil determined by w; and wy, which is the desired assertion. [
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Using this theorem one can easily prove the theorem of Poncelet (for
a pencil of circles) without algebraic arguments. In its general from, the
theorem of Poncelet will be proved in 3.3.

Theorem 2.13 (Poncelet). Suppose circles w; belong to the same pencil
and Ag is a point on wy. The tangent to wy from Ag intersects wg again at
Ay, the tangent to wy from A, intersects wy again at As, etc., the tangent
to wiy1 from A; intersects wo again at A;y1. Suppose that for some n the
points A, and Ag coincide. Then for any point By on wg, the similarly
constructed point B, coincides with By (Figure 2.41).

FIGURE 2.41

We note that it is not always possible to construct B,. This is the
case, for example, if By lies inside w;. We assume that such B,, has been
constructed.

Proof. It suffices to show that A;B; is tangent to some fixed circle from the
pencil. Indeed, if Ay coincides with A,,, then the tangent to the circle passing
through Ag coincides with the tangent passing through A, (assuming the
tangents run in the appropriate direction). Therefore their intersections
with wg must coincide, but these are By and B,,.

Suppose the lines AgA; and ByB; are tangent to w; at X and Y, respec-
tively (Figure 2.42). Let Z be the intersection of these lines. The triangle
XZY is isosceles (because ZX and ZY are simply the tangents to w; pass-
ing through Z). Therefore the angles X and Y in thattriangle are equal.
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Moreover the angles BjA;Ag and By BgAy are also equal. Thus the trian-
gles XQA,; and Y PBy are similar, where P and @ are the intersections of
the line XY with the segments AgBy and A;B;. Hence the angles PQA;
and QPBy are equal, and therefore there is a circle w' tangent to AgBp and
A1B; at P and Q, respectively.

FIGURE 2.42

We want to show that it belongs to the pencil. It suffices to prove that
wp belongs to the pencil determined by w; and «'.
We show that the ratios of powers of Ag, A1, By and By with respect to
2
wy and w’ are equal. Clearly, those ratios equal, respectively, ’:;—'%g, %%;,
2 2
—0—750’; and —L;glg . i
By the similarity of the triangles AgXP and B1YQ, the ratios %g%g
and -g—%; are equal. Likewise, by the similarity of the triangles BoY Q and
A1 XQ, the ratios —L;ﬁlgz and J—ggo}: are equal.

It remains to show that %g% = %g%. But, by the sine theorem,

AoX  sin/AgPX  sin/ZByPY  ByY

AgP ~ sin/AgXP ~ sin/BoYP  BoP’
A similar argument shows that A;B; and A;;1B;; are tangent to the
same circle from the pencil. It is easy to see that the segments A;B; can be

tangent to only one such circle. Hence this circle is the same for all segments
A;B;, and it must be /. O

The Poncelet theorem means, in particular, that if a polygon is inscribed
in one circle and circumscribed about another, then it can be “rotated”
between those circles. Moreover each diagonal of the polygon is tangent to
a circle coaxial with the circumscribed and inscribed circles (Figure 2.43).
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FIGURE 2.43

Besides the Poncelet theorem, the properties of radical axes also allow
for a proof of Brianchon’s theorem in its general form. First, we need to
state it.

Theorem 2.14 (Brianchon). Suppose lines l;, i = 1, ..., 6, are tangent
to the same conic, and let A;; be the intersection of l; and l;. Then the lines
A12A45, A23Asg and AsyAgr intersect at a single point.

Proof. Using a projective transformation we make the conic into a circle.
We assume that we have a hexagon circumscribed about the circle, and
the lines in question are its main diagonals. Our arguments can easily be
adapted to the cases where the lines form other configurations.

Thus, given a circumscribed hexagon ABCDEF (Figure 2.44), we have
to show that AD, BE and CF intersect at a single point.

Consider the circles w;, we and w3, tangent to the pairs of lines AB and
DE, BC and DE, CD and F A, respectively, and such that the tangency
points are at a distance a from the corresponding tangency points of the
sides of the hexagon and the circle (call them Aj;, Bj, ..., F1). Then the
power of A with respect to w; and w3 equals —(AA; + a)?. Hence it lies on
the radical axis of those two circles. The same is true for D. Thus AD is
the radical axis of w; and ws3. A similar proof shows that BF is the radical
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FIGURE 2.44

axis of w; and wq, and CF is the radical axis of we and w3. Therefore AD,
BE and CF intersect at a single point, namely, the radical center of wy, ws
and ws. O



Chapter 3

Projective Properties of
Conics

3.1. The cross-ratio of four points on a curve. Parametriza-
tion. The converses of Pascal’s and Brianchon’s theorems

Projective equivalence of conics means that all the properties of the circle
mentioned in the Introduction are also true for conics. In particular, for four
points A, B, C, D on a conic, the cross-ratio of the lines XA, XB, XC,
XD does not depend on the choice of a point X on the conic. This ratio
is called the cross-ratio of A, B, C, D. Clearly, the cross-ratio is preserved
under projective transformations.

We now choose and fix some point P of the conic and some line [ that
does not pass through P. Given a point X on the conic, consider the inter-
section point X’ of PX and [ (for the point P itself, we take the intersection
of | with the tangent at P). Clearly, this correspondence is one-to-one and
preserves the cross-ratio. Now any standard correspondence between the
points of I and the real numbers gives rise to a parametrization of the conic.
It is not difficult to see that under such a parametrization the coordinates
of X are rational functions of the parameter.

Theorem 3.1 (The converse of Pascal’s theorem). For any siz points
X;, i =1,...,6, such that the intersections of the lines X1 X2 and X3 Xs,
X2X3 and X5Xg, X3X4 and Xe¢X1 are on a straight line, there is a conic
passing through all the X;.

Proof. We use the fact that for any five points in general position, there is
a unique conic containing them. Let a be such a conic for X;, i =1,...,5.
Let A, B, C be the intersections of the lines X; X2 and X3Xs5, X2X3 and
Xs5Xg, X3X4 and X¢X1, and let Y be the intersection point of a and BXj
different from X5. By Pascal’s theorem, the intersection of X3X4 and XY
lies on AB, i.e., coincides with C. Hence Y coincides with Xs. O

65
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Theorem 3.2 (The converse of Brianchon’s theorem). Given any sic
lines l;, i = 1,...,6, let A;; be the intersection of the lines l; and l;. If the
lines A12Ass, AasAse and AsgAgy intersect at a single point, then there is a
conic tangent to all the l;.

The proof of this theorem is similar to that of the previous one. However,
here we first need to show that there is a unique conic tangent to five given
lines. Using Brianchon’s theorem, we can construct the tangency points of
those lines with the conic. But only one conic can pass through five points.
The construction of a tangency point is shown in Figure 3.1.

FIGURE 3.1

Using Brianchon’s theorem we can get a new proof of Theorem 1.11.
Indeed, suppose a parabola is inscribed in a triangle ABC. Through the
orthocenter H of the triangle, draw a line /; tangent to the parabola and a
line s perpendicular to it. If we show that AB, BC, CA, [, l5 and the line at
infinity are tangent to a conic, then, since there is a unique conic tangent to
five lines, it would coincide with the parabola. Therefore the tangents to the
parabola passing through the orthocenter are perpendicular, and therefore
the orthocenter lies on the directrix.

Let P be the intersection of AB with [/;, and X and Y the points of
the line at infinity in the direction of I3 and AC), respectively. Consider the
“hexagon” BPHXY C. The main diagonals BX, PY and HC are obviously
the heights of the triangle BPH, and therefore intersect at a single point.
The converse of Brianchon’s theorem implies that the hexagon BPHXYC
is circumscribed. It is now easy to see that its sides are the desired lines.

Pascal’s theorem shows that using a straightedge we can construct any
number of points on the conic passing through the five given points X7, X,
X3, X4, X5. Indeed, let A be the intersection of X;Xs and X4 X5, and [
an arbitrary line passing through A. Let B and C be the intersections of
I with XoX3 and X3X4. Then, by the converse of Pascal’s theorem, the
intersection point of the lines BX5 and C'X; lies on the conic. Similarly, by
Brianchon’s theorem, we can construct any number of tangents to the conic
that is tangent to five given lines.

Problem 15. Prove that the diagonals of two quadrilaterals, one formed by
the intersection points of two ellipses and the other formed by their common
tangents, intersect at a single point (Figure 3.2).
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FIGURE 3.2

Problem 16. A hexagon ABCDEF is inscribed in a conic. Prove that the
lines AC, CE, EA, BD, DF and FB are tangent to some conic. Deduce
from this the Poncelet theorem for triangles.

Problem 17. Suppose the tangent to a hyperbola at a point A intersects
the asymptotes at points A; and Ag, and the tangent at a point B intersects
the asymptotes at points B; and Bs. Prove that the lines A1 B3, A2B; and
AB intersect at a single point.

Problem 18. Triangles ABC and A'B’C’ are centrally symmetric. Three
parallel lines are drawn through A’, B’ and C’. Prove that their intersections
with BC, CA and AB, respectively, lie on a straight line.

Problem 19. Prove that a conic circumscribed about a triangle ABC is an
equilateral hyperbola if and only if it passes through the orthocenter of the
triangle.

Problem 20. (The hexagon theorem.) Suppose a conic intersects the sides
AB, BC and AC of a triangle ABC at points C; and Cs, A; and A, By
and Bs, respectively. Let A3, Bs and Cs be the intersections of the pairs
of tangents at the points A; and Ay, B; and Bz, C; and C; (Figure 3.3).
Prove that the lines AA3, BB3 and CC3 intersect at a single point.

FIGURE 3.3
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3.2. Polar correspondence. The duality principle

Suppose we are given a conic and a point A. Consider an arbitrary projective
transformation sending the given conic into a circle. Let A’ be the image of
A under this transformation, @’ the polar of A’ with respect to the circle,
and a the image of a’ under the inverse transformation. Then a can be
constructed as follows.

Consider two lines passing through A and intersecting the given conic
at points X1, X2 and Y3, Y2. Let X be the intersection of the tangents to
the conic at X; and X, and let Y be the intersection of the tangents at Y3
and Y,. Then the line XY coincides with a (Figure 3.4).

FIGURE 3.4

Indeed, applying this construction to the point A’ and to the circle we
have the line a’. Since projective transformations preserve the intersections
and tangencies of lines and conics, the line @ does not depend on the chosen
projective transformation. There is another way to construct a: this is the
line connecting the intersections of X;Y; with X2Y2 and of X;Y2 with XoY;
(Figure 3.5). In particular, if A is the center of an ellipse or a hyperbola,
we get the line at infinity. Notice that the last construction also applies
to degenerate curves of degree two; moreover, the constructed line passes
through the common point O of the lines I3 and lo comprising the curve,
and the cross-ratio (l1l2; OAa) of the lines equals 1 (Figure 3.6).

FIGURE 3.5

The defined correspondence between points and lines is called the polar
correspondence with respect to a given conic; a is called the polar of A and

A is the pole of a. Clearly, all the properties of the polar correspondence
mentioned before are still true.
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FIGURE 3.6

Notice that if a line p is the polar of a point P and an arbitrary line
passing through P intersects p at @ and the conic at points A and B, then
(PQ; AB) = 1. To see this, it suffices to consider the case when the conic is
a circle and one of the points P and @ is on the line at infinity (Figure 3.7).

FIGURE 3.7

In particular, if the conic is an ellipse or a hyperbola, then the midpoints
of all chords parallel to a fixed line lie on a line passing through the center of
the conic (the directions of this line and the fixed line are said to be conjugate
with respect to the conic); if the conic is a parabola, then the midpoints lie
on a line parallel to its axis (see Problem 10). The dual assertion is also
true: if tangents a and b to a conic and two arbitrary lines p and ¢ meet at
one point, then the pole of p lies on q if and only if (ab; pq) = 1.

The duality principle also remains true. Hence, for example, the converse
of Brianchon’s theorem is a consequence of the converse of Pascal’s theorem.
Furthermore, for any five lines in general position, there is a unique conic
tangent to them.

Definition. The dual curve of a smooth curve is the set of duals to all the
tangents of this curve.

An example of a curve and its dual curve is shown in Figure 3.8.
The following theorem provides an important property of the duality
operation.

Theorem 3.3. Let R(7y) be the dual curve of a curve y. Then R(R(v)) = 7.

Proof. Suppose a point X moves along v toward A. Then, clearly, the
intersections of the tangents at X and A (call them z and a, respectively)
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/\/\

FIGURE 3.8

tend to A. Let Y be the intersection of z and a (Figure 3.9). What happens
with the duals of 2 and a on the curve R(y)? Clearly, R(z) tends to R(a)
and therefore the segment R(a)R(z) tends to the tangent to R(vy) at R(a).
But R(a)R(z) is nothing but R(Y’), and therefore R(Y’) tends to the tangent
to R(v) at R(a). Then the dual of R(Y') tends to the dual of the tangent
at R(a). But this is the point Y which, under the motion, tends to A. It
follows that the dual of the tangent at R(a) is A. But this means that the
duals of the tangents to R(v) form the curve +. O

R(a)
R(Y)
R(x)

FIGURE 3.9

The polar correspondence provides yet another way of constructing con-
ics. Consider the circle o with center A and radius r and another circle
w with center O. The polars of all the points of a with respect to w en-
velop some curve, called the polar curve of a. The polar curve can also be
constructed as the set of the poles of all the tangents to a.

Theorem 3.4. The polar curve of a circle with respect to another circle is
a conic.

Proof. Let w be a circle with center O and w; a circle with center Oy (for
convenience, assume that O lies inside wy; see Figure 3.10). Suppose that
the inversion with respect to w transforms w; into a circle wo centered at
Os.

Let p(X) be the line passing through X and perpendicular to OX. It
is the polar of the inverse of X with respect to w. As X moves along
wy, its corresponding line sweeps the set of the polars of the points on w;.
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FIGURE 3.10

Thus we need to show that the set of all such lines is tangent to a conic.
Consider the reflection O’ of O in Oy, and the reflection O” of O in X. It
is easy to see that the length of the segment O’O” equals the diameter of
wy. Suppose O’O” intersects p(X) at a point Y. Then, since p(X) is the
midpoint perpendicular to OO”, the segments YO and YO" are of equal
length. Moreover, the angles formed by the line p(X) with YO and YO’
are equal. Therefore p(X) is tangent at Y to the ellipse with foci O and O’
and major semi-axis equal to the diameter of we. Moreover, it is easy to see
that, as X moves along ws, the point Y sweeps the entire ellipse.

Thus we have constructed a conic which is the polar curve of our circle.

If O is outside w;, then identical arguments show that the polar curve
is a hyperbola, and in the case when O lies on wj, the polar curve is a
parabola. |

Because of the projective equivalence of conics, the theorem just proved
can be generalized.

Theorem 3.5. The polar of a conic with respect to another conic is also a
conic.

The only thing that is not clear is why any two conics can be made into
circles by a projective transformation. In general, this is not true (although
this is true over complex numbers). But this is possible if the conics intersect
at no more than two points. This can easily be achieved by scaling (with
center at the center of the conic) the conic with respect to which we perform
a polar transformation so that it would intersect our conic at most at two
points. The dual curve will then scale in the opposite way. Now any two
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conics intersecting at most at two points can be made into two circles using
a projective transformation.

In fact, this theorem can be proved by using only the theorems of Pascal
and Brianchon. Choose and fix five points X3, X2, X3, X4 and X5 on the
conic a whose polar curve we consider. Then the polars of those five points
are tangent to some other conic, which we denote ;. Suppose a point X is
moving along a. Then the corollary of Pascal’s theorem can be applied to
the points X3,...,Xs and X. Hence the corollary of Brianchon’s theorem
applies to the polars of those points. But the converse of Brianchon’s theo-
rem implies that all these six lines are tangent to a conic. It could only be
the conic aj, since five of the lines (the polars of X;, i = 1,...,5) can be
tangent to only one conic. Thus the polars of all points on « are tangent
to ;. Reversing the argument, one can easily show that the conic o; is
traversed completely.

Finally, we mention yet another approach to defining conics and polar
correspondences. Suppose we have a one-to-one correspondence between
points and lines in the projective plane which has the duality property, i.e.,
if a point A belongs to the image of a point B, then B belongs to the image of
A. Then the set of points belonging to their own images is a conic (possibly,
imaginary) and the polar correspondence with respect to that conic coincides
with the given correspondence.

We now show that a focus and the corresponding directrix of a conic
are polar to each other. In fact, this has already been established for the
parabola. We prove this for the remaining conics.

Theorem 3.6. A focus and the corresponding directriz of a conic are polar
to each other (Figure 3.11).

FIGURE 3.11

Proof. Consider a focus Fj and its polar I. We prove that for any two points
X and Y on the conic, the ratios of the distances to Fy and [ are equal. Let
S be the intersection of the lines XY and [. Let Z denote the intersection
of the tangents to the conic at X and Y. By the properties of the polar
transformation, F1Z is the polar of S. By the corollary of Theorem 1.2,
the angle SF;Z is right. Moreover, Theorem 1.4 implies that F1Z is the
bisector of the angle XF1Y. Therefore F}S is the bisector of the exterior



3.2. POLAR CORRESPONDENCE. THE DUALITY PRINCIPLE 73

angle XF1Y. Therefore % = %—,}: Since the ratio of SX and SY equals
the ratio of distances from X and Y to any line containing S (and, of course,
different from XY'), we have E‘t& = E‘}Z, where d; and dy are the distances
from X and Y to l. Y a

This assertion can also be proved using Dandelin’s construction, which
we applied to prove that a conic is a projection of a circle (Figure 3.12). In
three-dimensional (and, more generally, in n-dimensional) space, one also
has duality transformations. They are constructed the same way as in two
dimensions. Moreover, points become planes and vice versa, whereas lines
are sent to lines.

<
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FIGURE 3.12

The polar plane of the point S with respect to the sphere Q is the plane
o, and the polar plane of the point F' is the plane m. Hence the polar of
the line SF is the line [. It is clear that the pole of I with respect to the
intersection circle of 2 and o is the intersection of the line SF and the plane
o. Therefore F is the pole of [ with respect to the intersection ellipse of our
cone and the plane 7 (consider the projection of o to 7 from the point S).

An interesting example of assertions interchanged by a polar transfor-
mation is Theorem 1.11 and Problem 19.

Indeed, let H be the orthocenter of a triangle ABC. The polar transfor-
mation with respect to a circle w with center H maps the triangle ABC into
a homothetic (with respect to H) triangle A’B’C’. If a parabola is tangent
to the sides of the triangle ABC, then the conic dual to it with respect to w
will pass through A’, B’ and C’ and also through H, because it is the pole
of the line at infinity. By Problem 19, this conic is an equilateral hyperbola.
The intersection points of this hyperbola and the line at infinity give rise to
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perpendicular directions, and therefore their polars will be perpendicular.
On the other hand, the polars of the intersection points of this hyperbola
with the line at infinity are the tangents to our parabola passing through H
(Figure 3.13).

FIGURE 3.13

Similar arguments allow one to deduce the assertion of Problem 19 from
Theorem 1.11. Therefore these assertions are dual to each other.

Now we mention a few more results related to the Ceva triangles of
triangles inscribed in a conic.

Theorem 3.7. A triangle ABC is self-polar (i.e., its sides are the polars
of the corresponding vertices) with respect to a conic if and only if it is the
Ceva triangle of a point on the conic with respect to a triangle inscribed in
the conic.

|
|
FIGURE 3.14

Proof. We begin by moving the vertices B and C of the triangle to points
at infinity with perpendicular directions. Then our conic will, obviously,
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become a conic centered at A (since the center of the conic is the pole of
the line at infinity). Consider the rectangle inscribed in the conic with sides
parallel to the directions given by B and C (such a rectangle exists because
the triangle ABC is self-polar). Its vertices can be viewed as a triangle and a
point on the conic for which the triangle ABC is self-polar (Figure 3.14). O

Theorem 3.8. Suppose we are given a triangle ABC and a point Z. For
an arbitrary line passing through Z, let A’ and B’ be its intersection points
with BC and AC. Then the locus of the intersections of the lines AA’ and
BB’ is a conic passing through A, B and C and tangent to the lines AZ
and BZ.

Proof. Apply a projective transformation making the triangle ABC into a
right isosceles triangle (AC = BC) and sending the point Z to infinity in
the direction perpendicular to AB. Then the triangles AA’P and B'BP,
where P is the intersection of AB and A’B’, are equal, and therefore the
lines AA’ and BB’ are perpendicular; i.e., their point of intersection lies on
the circumcircle of the triangle ABC. Moreover, the lines BZ and AZ are
tangent to that circle at A and B. 0

Now let Y be the intersection of the tangents to the conic at A and C.
Consider the intersections A’ and C’ of the lines passing through Y with
BC and AB. Then the intersection of the lines AA’ and CC’ lies on the
conic. This means that there is family of triangles A’B’C’, with vertices on
the corresponding sides of the triangle ABC, with the following properties.

1. For each triangle in the family, the lines AA’, BB’ and CC’ intersect
at a single point. The set of all such points is a conic passing through A, B,
C.

2. All lines A’B’ pass through the pole of the line AB with respect to
the circumscribed conic. Similarly, all lines A’C’ pass through the pole of
the line AC, and all lines B’C’ pass through the pole of the line BC.

Projective properties of conics may be useful for proving results seem-
ingly unrelated to conics. As an example, we have the following.

Theorem 3.9. Suppose we are given a triangle ABC and points P and Q,
and suppose that the lines AP, BP and CP intersect the respective sides of
the triangle at points A1, By, C1 and that the lines AQ, BQ, CQ intersect
the respective sides at points A2, Ba, Ca. Let C3, Cy be the intersections of
the lines CCy and A3Bs, CCy and Ay B;, respectively; the points As, Ay,
Bs, By are defined similarly. Then the lines A1Ay, AsAs, B1By, ByBs,
C1Cy, CoC3 intersect at a single point (Figure 3.15).

Proof. The points A, B, C, P, @ determine a conic. Without loss of
generality we may assume that the conic is a circle and PQ is its diameter.
Since Aj, B;, C; are the intersections of the opposite sides and the diagonals
of the inscribed quadrilateral ABC P, we have that A;Bj is the polar of
Cy. Since PQ is a diameter, the feet of the heights of the triangle PQC;
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FIGURE 3.15

dropped from P and @ lie on the circle. Examining the quadrilateral formed
by those feet and the points P and @, we see that the orthocenter of the
triangle PQC, lies on the polar of Cy, i.e., on A1B;. Since it also lies on
the line QC, it coincides with Cy. Thus the line C;C} is perpendicular to
the diameter PQ, i.e., it passes through the pole of the diameter. Similarly,
the remaining five lines also pass through the pole of P@, hence the pole is
the point mentioned in the theorem. a

Using duality we can prove the following nice theorem.

Theorem 3.10 (Frégier). Suppose we are given a conic and a point P on
it. Then all the chords seen from P at a right angle pass through a single
point (Figure 3.16).

FIGURE 3.16

Proof. Apply the polar correspondence with respect to a circle with cen-
ter P. Since the given conic passes through P, its transform will be a
parabola. The perpendicular lines passing through P will transform into
the two points at infinity corresponding to the perpendicular directions, and
their second intersections with the conic will become perpendicular tangents
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FIGURE 3.17

to the parabola. Since the intersection of those tangents lies on the directrix,
the corresponding chord passes through its pole P’. a

Clearly, P’ is the intersection of the diameter symmetric to the diameter
passing through P and the normal to the conic at P (Figure 3.17).

It is not difficult to see that P’ cuts the diameter in the ratio equal to
that of the squares of the axes of the conic, and therefore when P moves
along the conic, P’ sweeps a conic which is homothetic to the original conic
with respect to its center (if the original conic is a parabola, then the new
conic is obtained from it by parallel translation (Figure 3.18)).

FIGURE 3.18

Similar arguments prove the following generalization of the Frégier the-
orem.

The chords of a conic seen from a fixed point P on it at an angle ¢ or
180° — ¢ are tangent to some conic (Figure 3.19).

The duality with respect to a circle with center P transforms the desired
envelope into a conic (a hyperbola) from which the parabola is seen at an
angle ¢ or 180° — ¢.

FIGURE 3.19
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Problem 21. Let C be the center of a conic which is the polar of a circle
a with respect to a circle w. Prove that the polar of C' with respect to w
coincides with the polar of the center of w with respect to a.

Problem 22. 1. Prove that the directions conjugate with respect to an
equilateral hyperbola are symmetric with respect to its asymptotes.

2. Prove that the angle between concentric equilateral hyperbolas is
equal to twice the angle between their asymptotes.

Problem 23. What kind of curve is enveloped by the sides of the rhombi
inscribed in a fixed ellipse?

3.3. Pencils of curves. Poncelet’s theorem

Definition. Suppose we are given two conics with equations

(1) f(z,y)=0 and g(z,y) =0.
Then the pencil of conics is the set of curves with equations
() af(z,y) +byg(z,y) =0,

where a and b are arbitrary numbers.

Clearly, the pencil is determined by any two conics in it. Moreover, if
the two conics defining the pencil intersect at a single point, then all the
conics in the pencil pass through that point. If the two conics are tangent
to each other, then all the conics in the pencil are tangent to each other at
that point.

The pencils of circles defined in 2.4 are special cases of pencils of conics.
Indeed, if the line containing the centers of the circles is viewed as the z-axis
and the radial axis is viewed as the y-axis, then the equations of the circles
become

a:2+y2+aw+c=0,
where c is the power of the origin with respect to the circles of the pencil
and a is an arbitrary number. Clearly, this is a special case of equation (2).

The Fundamental Theorem of Algebra implies that any two curves of
orders m and n intersect at mn points (such points may be imaginary or
may coincide). In particular, when m = n = 2, we have that any two conics
intersect at four points. Then any conic in the corresponding pencil will also
pass through those points.

The converse is also true: for any conic passing through four intersection
points of the conics with equations f(z,y) = 0 and g(z,y) = 0, there are
numbers a and b such that the equation of the conic can be written as
af(x,y) + bg(z,y) = 0. This assertion is called the theorem on pencils of
conics.

It is not difficult to show that a hyperbola is equilateral if and only if
a11 + ag2 = 0 (see equation (1) in 1.2). Moreover, it is convenient to regard
a degenerate curve consisting of two perpendicular lines as an equilateral
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hyperbola. It now follows from the theorem on pencils of conics that if two
equilateral hyperbolas intersect at four points, then any conic in the pencil
determined by those points will also be an equilateral hyperbola. Thus we
have yet another proof of the fact that a conic circumscribed about a triangle
is an equilateral hyperbola if and only if it passes through the orthocenter.

—

/

U

FIGURE 3.20

The theorem on pencils of conics allows one to define the pencil as the set
of conics passing through four given points A, B, C, D in general position.
Moreover, for any point X different from A, B, C, D, there is exactly one
conic of the pencil passing through X.

Some of the points defining the pencil can be imaginary. For example,
any circle intersects the line at infinity in two fixed complex points so that
a hyperbolic pencil of circles is defined by those points and two common
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points on the circles, whereas an elliptic pencil is defined by four complex
points two of which are finite and two are at infinity. It can also happen that
some of the points defining the pencil coincide. If two points coincide, then
all the conics of the pencil are tangent to each other at the double point as
in a parabolic pencil of circles. If three of the four points coincide, then the
tangency at that point is of order two. If all four points coincide, then the
order of tangency is three. For example, the set of concentric circles is a
pencil formed by two pairs of coinciding points.

FIGURE 3.21

If all points defining the pencil are distinct, then there are three degen-
erate curves in that pencil: ABUCD, ACUBD and AD U BC.

Now we describe the various types of pencils in more detail.

1. Pencils passing through four distinct points (Figure 3.20). Elliptic
and hyperbolic pencils of circles belong to this type.
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2. Pencils passing through four points two of which coincide, i.e., pencils
tangent to a given line at a fixed point (Figure 3.21). Parabolic pencils of
circles belong to this type.

3. A pencil defined by two coinciding pairs of points. It consists of
conics tangent to two given lines at two given points (Figure 3.22). Pencils
of concentric circles or parabolas with equation y = ax? belong to this type.

FIGURE 3.22

4. A pencil defined by four points three of which coincide (Figure 3.23).
The conics of such a pencil are tangent to a circle.

5. A hyperosculating pencil whose four defining points coincide (Fig-
ure 3.24). An example of such a pencil is given by the parabolas with
equation y = z2 + a.
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In addition to pencils defined by four points one can consider dual pen-
cils, i.e., sets of conics tangent to four given lines. Dual pencils are then
classified according to the number of coinciding defining lines. If two lines
coincide, then all the conics of the pencil are tangent to them, and therefore
to each other, at a point.

FIGURE 3.25
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If three of the lines coincide, then the conics of the pencil osculate. If
all four lines coincide, then the conics hyperosculate. Notice that double
tangent and hyperosculating pencils are self-dual, i.e., are transformed into
themselves under the polar correspondence with respect to any conic in the
pencil. The duality principle allows one to state, for each assertion concern-
ing usual pencils, the corresponding assertion concerning dual pencils, and
vice versa.
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FIGURE 3.26
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FIGURE 3.27

Using the theorem on pencils of conics one can prove the following nice
result.

Theorem 3.11 (The four conics theorem). Suppose we are given three
conics oy, az, az, and let Pi, @1, P, Q] be the intersections of az and
as; P2, Q2, P}, Q4 the intersections of a1 and as3; and P3, Q3, P3, Q5 the
intersections of as and oy. If the points P1, Q1, P2, Q2, P3, Q3 lie on one
of the comics, then the lines P|Q}, PyQ5, P3Q% intersect at a single point
(Figure 3.28).

Proof. We first need the following auxiliary result.
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FIGURE 3.28

Theorem 3.12 (The three conics theorem). Suppose three conics have
two common points. Then their common chords passing through the remain-
ing intersections of each pair meet at a single point (Figure 3.29).

FIGURE 3.29

To prove this claim it suffices to transform the common points of the
conics into the intersection points of the line at infinity and circles. Then all
three conics will transform into circles and the desired assertion will follow
from the existence of the radical center.

Now let ap be the conic passing through the points P;, Q;, and let
F;(z,y) = 0be an equation of ¢;. Since the degenerate conic consisting of the
lines P> P3 and Q2Q)3 belongs to the same pencil as ag and a3, we may assume
that its equation is of the form Fy = Fj. Similarly, the conics consisting of
the lines P1Q1, P3Q3 and P1Q;, P2Q2, will be given, respectively, by the
equations Fo = F5 and Fy = F3. Therefore for each point on the line P3Q3
we have F; = F,. Since this also holds for the points P; and Qj, this is
an equation of the degenerate conic consisting of the lines P3Q3 and P;Q5.
Accordingly, the conics consisting of the lines P,@Q2 and P3Q5, is given by
the equation F; = F3, and the conic consisting of the lines P;Q; and P{Q) is
given by the equation Fy = F3. Thus these three conics belong to the same
pencil. Three of the points determining this pencil can be found using the
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three conics theorem applied to the triples ag, a1, ag; ag, a1, as; and ag,
ag, as: they are the intersections of the triples of lines PiQ1, P2Q2, P4Q5;
P1Q1, PsQ3, P3Q5; and P2Q2, P3Q3, P{Q}. Hence the fourth point belongs
to all the lines P/Q;. Similar arguments prove the converse: if each of the
four triples of lines P1Q1, P2Q2 and P;Q%; P1Q1, P3Qs and PyQb; PaQo,
P3Q3 and P{Q}; and P{Q], P;Q5 and P3Q% intersects at a single point, then
the points Pla Qh P, Q27 P, Q3 (as well as P, Q17 Pé, 127 P,7 Q.{B and
the two similar sextuples) lie on a conic. O

Using the duality principle we have the following results.

Theorem 3.13 (Dual to the three conics theorem). Suppose three
conics are tangent to two given lines. Then the intersections of the common
tangents to each pair of conics which are different from the given lines lie
on a straight line (Figure 3.30).

FIiGUure 3.30

Theorem 3.14 (Dual to the four conics theorem). If two of the com-
mon tangents to each pair of three given conics are tangent to the same
conic, then the intersections of the other two tangents to each pair lie on a
straight line (Figure 3.31).

We now mention some important properties of pencils.

Theorem 3.15. Let A, B, C, D be four distinct points, and X, Y, Z the
intersections of the lines AB and CD, AC and BD, AD and BC. Let P
be a point different from X, Y and Z. Then the polars of P with respect to
all the conics of the pencil determined by the points A, B, C and D pass
through a single point.

Here is an interesting special case. If the points A, B, C' and D form
an orthocentric quadruple (i.e., each point is the orthocenter of the trian-
gle formed by the remaining points), then the obtained point is isogonally
conjugate to P with respect to the triangle XY Z.

Indeed, the polar of P with respect to the degenerate curve formed by
the lines AB and CD is the line symmetric to X P with respect to AB. Since
AB and CD are the bisectors of the angle Y X Z, this line passes through
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FIGURE 3.31

the isogonal conjugate P’ of P. Similarly, P’ lies on the polar of P with
respect to another degenerate curve, and therefore with respect to any curve
of the pencil.

In the same way, one can show that if one of the points A, B, C' and
D is the centroid of the triangle formed by the other three points, then the
above transformation is the isotomic conjugation with respect to XY Z.

Summarizing the above discussion we conclude that isotomic and iso-
gonal conjugations are projectively equivalent.

Instead of proving Theorem 3.15 we prove the dual theorem.

Theorem 3.16. Suppose we are given four lines l;, 1 =1, ..., 4, and let
Xij be the intersection of the lines l; and l;. Then the locus of the poles of
any line different from X19X34, X13X024, X14X23 with respect to the conics
of the pencil given by the lines l; is a straight line (Figure 3.32).

Proof. Using a projective transformation, we move the line in question to
infinity. It follows from the assumptions that in this case the lines I; form
a quadrilateral ABCD which is not a parallelogram. We prove that the
centers of the conics inscribed in it lie on the so-called Gauss line passing
through the midpoints of the diagonals of the quadrilateral.

Notice that the Gauss line is the locus of points P such that Spap +
Spcp = Spec + Sppa (the area could be positive or negative depending
on the orientation of the corresponding triangle). Indeed, the area of each
of the four triangles is a linear function of the coordinates of P; hence the
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FIGURE 3.32

set of points satisfying the above condition is a straight line. Clearly, the
midpoints of the diagonals belong to that line.

Suppose now that a conic with foci F} and F? is inscribed in the quadri-
lateral ABCD. Since its center is the midpoint of the segment FjFj, the
assertion of the theorem is equivalent to the assertion that Sk, 4+ Sk cp +
SmAB + Srep = Sr,Bc + Sripa + SkrBc + SRDA.

Let F] be the reflection of Fy in AB. Then

1
SF].AB+SF2AB = SF{AFgB = 5AF11AF2 sin ZF{AF2+BF1/'BF2 sin ZF{BFz.

But the points F; and F» are isogonally conjugate with respect to ABCD,
and therefore ZFjAF, = ZF{AB+ /F,AB = /A, ZF]{BF, = /B and

SF{AF2B = (AF1 . AF2 sinZA + BF] . BF2 SIDZB)

DN =

FIGURE 3.33
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FiGURE 3.34

This, together with similar equalities, implies that the left- and the right-
hand sides of the desired equality are equal to

-;—(AFl -AF;sin /A + BF; - BFsin /B
+ CFy - CFysin ZC + DF; - DF,sin D).
O

As a special case of Theorem 3.16 we have Monge’s theorem asserting
that if a circle is inscribed in a quadrilateral, then its center lies on the
Gauss line.

Recall that the foci of such conics are isogonally conjugate in the poly-
gon. The pedal circles of those foci with respect to the polygon exist and
coincide. Their centers are the midpoints of the segments connecting the
foci. Hence the centers of all such circles lie on the Gauss line.

Theorem 3.15 has the following nice consequence.

Corollary. Suppose we are given a triangle ABC and two pairs of isogonally
(isotomically) conjugate points X, X' and Y, Y'. Then the intersections of
XY with X'Y' and of XY’ with X'Y are also isogonally (isotomically)
conjugate (Figure 3.34).

Proof. Consider the pencil of conics giving rise to the conjugation in ques-
tion. In that pencil, choose a conic with respect to which the polar of X
coincides with the line X'Y”. Then the polar of Y’ passes through X, i.e., it
coincides with XY, and the pole of the line XY” is the intersection point of
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the lines XY and X'Y’. Therefore the conjugate of that point lies on XY".
Similarly, it lies on X'Y". O

Theorem 3.17. The poles of a fized line with respect to all the conics of
the pencil defined by points A, B, C and D form a conic.

Proof. Transform the given line into the line at infinity. Then its poles will
be the centers of the conics of the pencil. It follows from the converse to
Pascal’s theorem that the midpoints K, L, M and N of the sides of the
quadrilateral ABCD belong to the set of the centers. Hence it suffices to
show that for the center O of any conic of the pencil, the cross-ratio of the
lines OK, OL, OM and ON is the same. This cross-ratio equals the ratio
of the poles of those lines, which are the intersection points of the line at
infinity with the sides of the quadrilateral ABCD and are independent of
the choice of the conic. 0

Notice that the center of a degenerate curve of degree two is the inter-
section of the lines making that curve. Therefore the conic mentioned in
Theorem 3.17 always passes through the intersections of the lines AB and
CD, AC and BD, AD and BC.

Similar to Theorem 3.15, Theorem 3.17 also has an important special
case.

Corollary. Suppose we are given a triangle ABC and a line | not passing
through its vertices. Then the isogonal (isotomic) conjugate of l is a conic
passing through A, B and C.

This corollary yields another proof of the assertion of Problem 19. The
isogonal conjugates of the conics passing through the vertices of the triangle
are lines. The infinite points of those conics transform into points on the
circumcircle, and the points in the perpendicular direction transform into
antipodal points (as is easy to check). Hence those lines pass through the
center of the circumcircle of the triangle. The isogonal conjugate of that
center is the orthocenter of the triangle; i.e., the conic must contain the
orthocenter of the triangle. The converse is proved similarly.

Theorem 3.15 has another nice proof under the assumption that the
pencil in question consists of circles.

Notice that the radical axes of P and the circles of the pencil W intersect
at a single point, which we denote Q. This is clear, since on the radical axis
of W, the powers of points with respect to all circles are equal. Therefore
the desired P is a point on the radical axis whose power with respect to
some circle in the pencil equals the square of the distance to P. The polar
of P with respect to any circle is parallel to the radical axis of P and the
circle and is twice as far from P (Figure 3.35). Thus all the polars of P with
respect to the circles of W pass through the reflection of P in Q.

Problem 24. Prove that an equilateral hyperbola is self-dual with respect
to the circle that is tangent to the hyperbola at its vertices.
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FIGURE 3.35

Problem 25. Inside a convex quadrilateral, a point T is given which is
equidistant from the opposite sides. Prove that T lies on the line connect-
ing the midpoints of the diagonals of the quadrilateral if and only if the
quadrilateral is either inscribed or circumscribed or a trapezoid.

Problem 26. Inside an angle with vertex O, points A and B are given. A
billiard ball can move from A to B by reflecting either in one side at point
X or in the other side at point Y. Let C and Z be the midpoints of the
segments AB and XY.

1. Prove that if the angle O is right, then C, Z and O lie on a straight
line.

2. Prove that if the angle O is different from 90°, then the line CZ
passes through O if and only if the polygonal lines AXB and AY B are of
the same length.

Problem 27. Two points of a conic lie on two circles one of which intersects
the conic at points X; and Y7, and the other at points X5 and Y3. Prove
that the lines X;Y; and XY> are parallel.

Problem 28. Prove that for any quadrilateral, the midpoints of its sides
and of the diagonals, as well as the intersections of the diagonals and of the
opposite sides, lie on a conic. What kind of conic is it if the vertices of the
quadrilateral form an orthocentric quadruple?

Problem 29. Prove that the centers of the conics circumscribed about a
quadrilateral ABC D form an equilateral hyperbola if and only if the quadri-
lateral ABC D is inscribed.

Problem 30. Suppose we are given three circles, each lying outside the
other two. Prove that the common inner tangents to each pair of circles
form a hexagon whose main diagonals intersect at a single point.
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Poncelet’s theorem.

Consider now the pencil determined by points A, B, C, D and a line [ not
passing through these points. If one of the conics of the pencil intersects [
at P, then it intersects | at another point P’ (which may coincide with P).
The transformation P — P’ will be called the involution of | defined by the
pencil. Applying Pascal’s theorem to the hexagon ABCDPP’, we obtain a
method of constructing P’, shown in Figure 3.36.

FI1GURE 3.36

Since this construction can be represented as the composition of central
projections, the involution preserves cross-ratios. In particular, this implies
that [ is tangent to at most two conics of the pencil. Moreover, the involution
is uniquely determined by two pairs of the corresponding points.

Notice also that if not all four points defining the pencil are real, then the
property of involution can be established without using the complex plane;
all we need is a projective transformation making the pencil into circles. Let
P be the intersection of the line and the radical axis of the pencil. Then the
involution of the line will be just the inversion with center P.

With the aid of involution, we prove Poncelet’s theorem in the general
case, i.e., for a pencil of conics.

Theorem 3.18 (Poncelet). Suppose conics ag, a1, .. ., a, belong to a pen-
cil F. From an arbitrary point Ag on ag draw a tangent to a; and find its
second intersection point Ay with og. From A; draw a tangent to az and
find its second intersection point A; with ag, etc. If for some point Ay the
point A, coincides with Ay, then the same is true for any other point of the
conic ay.

Proof. We use induction on n. First we establish a result which is of inde-
pendent interest.

Lemma 3.8. 1. Suppose points A, B and C lie on a conic ap, the line AB
is tangent to the conic oy at K, and the line AC is tangent to the conic oz
at L. Then there is a point D on ag such that ay is tangent to the line CD
and ag is tangent to the line BD at the points of their intersections with
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KL. Moreover, there is a conic of the pencil F tangent to the lines AD and
BC at their intersections with K L.

2. Suppose that points A, B, C and D lie on a conic ag and that the
conic oy 1s tangent to AB at a point K and to CD at a point M. Then
there is a conic of the pencil F tangent to the lines AC and BD at their
intersection points with KM (Figure 3.37).

FIGURE 3.37

Proof. 1. Let M be the second intersection point of @3 and KL, and let
G be the pencil containing ; and the degenerate curve consisting of the
lines CM and AB. On the line AC, the pencils F and G give rise to the
same involution defined by the points A and C and the intersections of AC
with a; (which are not necessarily real). Therefore the point L is a double
involution point defined by the pencil G, i.e., G contains the double line K L.
Therefore all conics of G, including «;, are tangent to CM at M. Let D
be the second intersection point of CM and «p. Applying the foregoing
argument to the points B, C and D we have that a3 is tangent to the line
BD at its intersection point with K L. Next we determine the intersection
point of the lines AD and KL and take the conic of F passing through it.
The same argument shows that that conic is tangent to the line AD.

The fact that it is also tangent to BC' and assertion 2 of the theorem
are proved similarly. O

Corollary. Suppose the line AB is tangent to the conic oy at X and the
line AC 1is tangent to the conic ae at Y. Then there are exactly two conics
of the pencil F tangent to BC at points Z1 and Zy; moreover X, Y and Z;
lie on a straight line and the lines AZs, BY and CX intersect at a single
point.

Now we can prove Poncelet’s theorem for n = 3. Suppose the lines
ApAi, A1Ag, AsAg are tangent to the conics a;, ag, a3 at points X;, Xo,
X3 that do not lie on a straight line, and the line ByB; is tangent to the
conic a; at a point Y;. By Lemma 3.8, there is a conic ¢/ in F tangent to
the lines AgBy and A; B; at their intersection points Zg and Z; with XY,
and a point By on ag such that as is tangent to By B2 and o is tangent to
By A at their intersection points Yo and Z5 with Z; X2. Moreover, there is a
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conic o’ tangent to the lines A3 Ag and BBy at their intersection points K
and Y3 with ZyZy. Applying Desargues’ theorem to the triangles AgA; Ao
and ZyZ,Z,, we see that the points X3, X2, K are not on a straight line.
Therefore K = X3 and o = as.

Now suppose that n is arbitrary. Use the points Ag, A; and As to
construct a conic @’ tangent to the lines AgAs and ByB;. Since the sides of
the polygon AgAsg...An_1 are tangent to the conics o, a3, ..., on, We can
make the induction step from n — 1 to n. 0O

Conics with the common focus and directrix.

Consider a family Q of conics with a fixed focus F' and the corresponding
directrix 1.

By Theorem 3.15, the polar transformations with respect to those conics
act the same way on the lines passing through F. More precisely, a line a
transforms into the intersection of the perpendicular to a at F with the
line [.

Using a projective transformation, make one of our conics into a circle
such that F' will transform into its center F’. Then the directrix will trans-
form into the polar of the center, i.e., the line at infinity. What happens
with the other conics under such a transformation?

They will transform into the pencil of circles with center F'!

Indeed, they will transform into conics such that the polar of the line at
infinity is F’. But for any conic, the pole of the line at infinity is its center,
and therefore the center F” is the center of all such conics. Moreover, the
pole of any line passing through F’ must be the point on the line at infinity
in the direction perpendicular to that line (because this is true for a circle,
and the dual transformation on the lines passing through F’ is the same for
all conics). Obviously, this is possible only if all the conics are circles.

Notice that concentric circles transform into each other under the dual
polar transformation with respect to one of those circles. This property is
also preserved under the dual transformation! Thus we have proved the
following result.

Theorem 3.19. The polar transformation with respect to one of the conics
of the family Q (which is a family with fized focus and directriz) leaves the
family Q unchanged; i.e., the conics of this family transform into conics of
the same family.

The fact that this pencil is projectively equivalent to a pencil of concen-
tric circles allows one to describe the action of this transformation on the
conics.

Theorem 3.20. Let R be the polar transformation with respect to some
conic of Q. Suppose a point X on the conic a (from Q) transforms into
the line R(X) tangent to R(c) at Y. Then the points X, Y and F lie on a
straight line (Figure 3.38).
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FIGURE 3.38

Under such a transformation, the eccentricity changes as follows.

Theorem 3.21. Suppose conics a1 and ae are dual with respect to a conic
a (assuming that all of them are from Q). Then e1ea = €2, where €, € and
€2 are the eccentricities of the conics a, oy and ae, respectively.

Proof. Let F; be the projection of F' to the line I. Let X, Y and Z be the
points where the segment F I intersects the conics o, a; and oo, respec-
tively. We need to show that
FY FZ FX 2
RY FRZ FX?*
After the right-hand side is divided by the left-hand side and the expres-
sion obtained is rearranged, we see that the equality
FY -FX FZ-FX _1
FX-KRY FX-FZ
is to be proved. Note that the left-hand side equals (XY; F,F)- (X Z; F,F),
and therefore it does not change under projective transformations. It re-
mains to show that this equality holds when the conics are concentric circles.
Thus we perform a projective transformation making a, a3 and as into
three concentric circles o/, o} and of, with center F’ (which is the image of
F). The points X, Y, Z and F) transform into points X', Y, Z’' and F]
lying on a straight line (which also contains F’), and F] transforms into a
point at infinity.
By the definition of the polar transformation with respect to a circle,
F'Y'-F'Z' = F'X"?. Hence
FY' -FX' FZ -FX FY -0 FZ7Z
F'X'-FY' F'X'-FZ T F'X'-00 F'X' o0
FY' F'Z
~FX X
Notice also that the conics mentioned in the generalized Frégier theorem
can be obtained from Q by the dual transformation. Therefore they form a

=1 O
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pencil of the third kind and, using a projective transformation, we can make
them into concentric circles.

Problem 31. Prove that the foci different from F' of two conics from the
pencil @ which are dual with respect to a parabola are symmetric with
respect to [.



Chapter 4

Euclidean Properties of
Curves of Second Degree

4.1. Special properties of equilateral hyperbolas

Recall that a hyperbola is said to be equilateral if its asymptotes are per-
pendicular. In the previous chapter we gave several proofs that the conic
circumscribed about a triangle is an equilateral hyperbola if and only if it
passes through the orthocenter of the triangle. In this section we establish
some other interesting properties.

Theorem 4.1. The centers of all equilateral hyperbolas passing through the
vertices of a triangle ABC lie on the Euler circle of the triangle.

FIGURE 4.1

Proof. Let D be the fourth (besides A, B and C) intersection point of the
hyperbola and the circumcircle of the triangle ABC, and A’, B’, C' and D’
the orthocenters of the triangles BCD, CDA, DAB and ABC, respectively
(Figure 4.1).

99
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Since CD’ = 2R |cos ZBCA| = 2R | cos ZBDA| = DC’, we have that
CDC'D' is a parallelogram, i.e., C'D’ || CD and C'D’ = CD.

Therefore the quadrilaterals ABCD and A’B'C'D’ are centrally sym-
metric. The center of symmetry is the center of the hyperbola on which, by
the main property of equilateral hyperbolas, all the eight points lie. More-
over, it coincides with the midpoint of the segment DD’ and therefore lies
on the Euler circle of the triangle ABC (as well as on the Euler circles of
the triangles BCD, CDA and DAB). O

Notice that Theorem 4.1 implies the following fact. If lines @ and b
rotate about points A and B, respectively, with velocities that are equal in
the absolute value but have different directions, then their intersection point
sweeps an equilateral hyperbola and the points A and B are symmetric with
respect to the center of the hyperbola. Indeed, if A and B are symmetric
with respect to the center and X and Y are arbitrary points of the hyperbola,
then its center lies on the Euler circle of the triangle AXY. Let M be the
midpoint of the segment XY. Then ZA = LM = ZO = 4B (Figure 4.2).
The latter is true because the homothety with center A and coefficient 2

transforms the Euler circle of the triangle AXY into the circumcircle of the
triangle BXY.

FIGURE 4.2

Now consider the triangle ABC and the point P. The circles symmet-
ric to the circumcircles ABP, BCP, CAP with respect to AB, BC, CA,
intersect at a single point. This will be the point P’ symmetric to P with
respect to the center of the hyperbola ABCP. Indeed, the previous asser-
tion implies that the circles ABP and ABP' have equal radii; i.e., they are
symmetric with respect to AB.

Theorem 4.2. Suppose we are given a triangle ABC and a point P different
from its orthocenter. Then the centers of the incircle and the excircles of
the Ceva triangle of P with respect to the triangle ABC lie on an equilateral
hyperbola passing through A, B, C and P.

Proof. This property is a special case of the following fact.
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Lemma 4.9. Suppose we are given two triangles Ay B1C; and A3 B2Cs, and
let A', B’ and C’ be the intersections of BiCy and ByCy, C1A; and CoA,,
A1 By and AsBs, respectively. If the triangle A’B'C’ is in perspective with
the triangle A1 B1C1 as well as with A3 B2Csy (from the centers of perspective
D; and D3), then the points Aj, B1,Ci, D1, Az, Ba,Co, Dy lie on a conic
(Figure 4.3).

FIGURE 4.3

Proof. Using an appropriate projective transformation, we can make the
quadrilateral A;B;C1D; a square. Since the points A’ and C’ will go to
infinity in perpendicular directions, the quadrilateral A BoCs D5 will become
a rectangle whose sides are parallel to the sides of the square. Moreover, the
image of the point B’ will be the center of both the square and the rectangle.
Clearly, the conic passing through the vertices of the square and one of the
vertices of the rectangle also passes through the other three vertices. O

Suppose now that A’B’'C’ is the Ceva triangle of the point P, I’ is the
center of the circle inscribed in it, and I}, I;, I, are the centers of the
excircles. Then the triangles ABC and I} I} I, satisfy the hypotheses of the
lemma. Therefore the points A, B, C, P, I}, I}, I., I’ lie on a conic.
Since I is the orthocenter of the triangle I I; I, this conic is an equilateral
hyperbola. g

Theorem 4.3. Suppose points A, B, C, D lie on an equilateral hyperbola.
Then the Ceva circle of D with respect to the triangle ABC' passes through
the center of the hyperbola (Figure 4.4).

Proof. By Theorem 4.2, the centers I, I}, I’ of the excircles of the Ceva
triangle lie on the hyperbola. Since the Ceva circle is the nine-point circle
of the triangle I/ I; I, it passes through the center of the hyperbola. a
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FIGURE 4.4

Theorem 4.4. Suppose points A, B, C and D lie on an equilateral hyper-
bola. Then the pedal circle of D with respect to the triangle ABC passes
through the center of the hyperbola.

Proof. Let A’B'C’ be the pedal triangle of D, and Bj, C; the midpoints of
the segments BD and CD (Figure 4.5).

FIGURE 4.5

To prove that the circumcircle of the triangle A’ B'C’ also passes through
the center Q of the hyperbola, it suffices to show that the angles A’C’' B’ and
A'QB’ are equal.

Notice that ZDC'A’ = ZDBA’ since the quadrilateral C’'BA’D is in-
scribed. The segment B;C; is a midline of the triangle DBC and therefore
/DB;C; = Z/DBA’. Since the points D and A’ are symmetric with respect
to B1C1, the angles DB;C; and A'B;C; are equal. The point @, as the
center of an equilateral hyperbola, lies on the Euler circle of the triangle
BCD. Therefore ZA'B,Cy = ZA'QC;. Thus

4DC'A' = £/DBA' = /DB;Cy = LA'B1C; = LA'QC;.
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Similarly ZDC'B’ = B'QC). Therefore
LAC'B = /AC'D + /DC'B = ZA'QC, + LCiQB = ZAQB'. O

Theorem 4.5 (Emelyanov and Emelyanova). Let A;, By and C; be
the feet of the bisectors of a triangle ABC, Az, By, Cs the feet of its heights,
C*, B*, A* the intersections of the lines A1 By and A3Bs, C1A; and C2As,
B;C1 and BoC> (henceforth such points will be called the poles), and A’ and
B’ the intersections of an arbitrary line passing through C* with BC and
AC, respectively. Then:

1. The lines A'B*, B'A* and AB intersect at a single point (call it C').

2. The lines AA’, BB’ and CC' intersect at a single point

3. The circumcircle of the triangle A’ B'C’ passes through the Feuerbach
point of the triangle ABC (Figure 4.6).

FIGURE 4.6

Proof. Parts 1 and 2 follow from Theorem 3.9. We now prove part 3. Since
the set of the centers of perspective of the triangles from the Feuerbach
family lies on an equilateral hyperbola (it is called the Feuerbach hyperbola),
their Ceva circles pass through the center of the hyperbola. Their pedal
circles also pass through that center. But the pedal circles of the points I
and H have a single common point—the Feuerbach point. Therefore it is
the center of the hyperbola. 0
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This theorem admits a generalization: If a family of Ceva triangles sat-
isfying the conditions of parts 1 and 2 of Theorem 3.9 contains the ortho-
triangle, then their Ceva circles have a common point.

Since the center of the hyperbola lies both on the Ceva and the pedal
circles of its points and the pedal circles of any two isogonally conjugate
points coincide, the pedal circle of the points isogonally conjugate to the
points of the Feuerbach hyperbola pass through the Feuerbach point. But
the isogonal transform of a conic passing through the vertices of a triangle is
a line. In our case, this line passes through the center O of the circumcircle
of the triangle ABC, which is isogonally conjugate to the orthocenter, and
through the self-conjugate point I. Thus we have proved:

If a point lies on the line OI, then its pedal circle passes through the
Feuerbach point.

This result also admits a generalization: Suppose [ is a line passing
through the point O. Then the pedal circles of all points of | have a common
point.

Consider again the line [ passing through O. For each of its points P,
define another point P’ such that the points isogonally conjugate to P and P’
are symmetric with respect to the center of the equilateral hyperbola passing
through those points and the vertices of the triangle. The properties of the
isogonal conjugation established in 3.3 show that the transformation P — P’
preserves cross-ratios. Since that transformation fixes the intersection points
of the line ! with the circumcircle and interchanges O and the point at
infinity, it coincides with the transformation generated on ! by the inversion
with respect to the circumcircle. Thus we have proved the following.

Theorem 4.6. Two points are inverses of each other with respect to the
circumcircle of a given triangle if and only if their isogonal conjugates are
symmetric with respect to the center of the corresponding equilateral hyper-
bola.

In conclusion, we mention two more interesting facts. Clearly, the line
OI contains the centers of homothety of the incircle and the circumcircle of
the triangle. The Gergonne and Nagel points isogonally conjugate to them
lie on the Feuerbach hyperbola, i.e., we have the following result.

Let AA,, BB;, CC be the bisectors of a triangle ABC, AAy, BBy and
CCs its heights, A3, B3 and C3 the tangency points of the sides BC, CA,
AB and the incircle, and A4, By and Cy the tangency points of the sides
and the corresponding excircles. Then the lines A1By, AsBy, A3B3, AyBy
intersect at a single point.

Now consider the line passing through O and the Lemoine point L. That
line contains two Apollonius points whose pedal triangles are equilateral.
The isogonal transform of that line is the Kiepert hyperbola passing through
the centroid M and the Torricelli points 77 and T5. Moreover, T and T,
obviously, have the following property: the circles symmetric to the circles
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ABTi, BCTy and CAT; pass through T,. Therefore the midpoint of the
segment 7775 is the center of the Kiepert hyperbola and therefore lies on
the nine-point circle.

Moreover, since the lines 71Ty and T»T} are parallel to the Euler line
and the lines T1T> and TT; pass through L, we conclude that: a) the lines
T1T, and T{T pass through M, and b) the centers of the two equilateral
pedal triangles lie on the line LM.

Problem 32. Given a quadrilateral ABCD, find the locus of points P such
that the radii of the circumcircles of the triangles ABP, BCP, CDP and
DAP are equal.

Problem 33. Let P be an arbitrary point on an equilateral hyperbola. Let
Q be the point symmetric to P with respect to the center of the hyperbola.
The circle with center P and radius PQ intersects the hyperbola at three
more points A, B and C. Prove that the triangle ABC is equilateral.

Problem 34. Let P be the center of an equilateral hyperbola passing
through the vertices of an inscribed quadrilateral ABCD. Prove that P
lies on the line connecting the center of the circumcircle and the centroid of
the quadrilateral ABCD.

Problem 35. Prove that points A, B,C, A’, B’,C’ lie on a conic if and only
if there is a conic with respect to which both triangles ABC and A’B'C’ are
self-polar.

Problem 36. A triangle ABC is self-polar with respect to a conic with
center O. Prove that this conic is homothetic to the conic passing through
the midpoints of the segments AB, BC, CA, OA, OB, OC.

4.2. Inscribed conics

Consider a conic inscribed in a triangle ABC. Let A’, B', C’ be its tangency
points on the sides BC, CA, AB. Using a projective transformation that
makes the conic into a circle, we have that the lines AA’, BB’, CC’ intersect
at a single point. That point is called the perspector of the conic. Since there
is a unique projective transformation fixing the vertices of the triangle and
transforming the given point P into the Gergonne point (the perspector of
the incircle), there is a unique conic with perspector P.

The next result describes a connection between the perspector and the
center of the conic.

Theorem 4.7. Let P be the perspector of the conic, Q its center, and M
the centroid of the triangle. Then M lies on the segment P'Q, where P’ is
the isotomic conjugate of P and P'M = 2MQ (Figure 4.7).

Proof. First, we note that if the conic is inscribed in a triangle ABC, then
the pole of the median C M, lies on the line ¢, passing through C and parallel
to AB. Indeed, the cross-ratio of the lines ¢,,, CM,, CA, CB equals 1.
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FIGURE 4.7

Suppose now that a conic with center @) is tangent to the sides of the
triangle at points A’, B’, C’, and let C; be the intersection of the lines C'Q
and A’'B’. Since Q is the center of the conic, the pole of the line C'Q is the
point at infinity of the line AB, and the pole of the line A’B’ is C. Thus
the polar of C; is the line ¢,,, and therefore C; lies on the median CM..

By Theorem 3.9, the intersection of the lines CC’ and M.Q lies on
the midline M,M,, i.e., Q is isotomically conjugate, with respect to the
triangle M, My M., to the image of the perspector P under the homothety
with center M and coefficient —%. This immediately implies the assertion
of the theorem. d

Theorem 4.7 implies that for each point, there is a unique inscribed conic
with center at that point. In particular, if the center of the conic coincides
with M, then M is also the perspector and the conic is the inscribed Steiner
ellipse, i.e., the preimage of the incircle under an affine transformation mak-
ing the triangle equilateral. Notice that the Steiner ellipse has the largest
area of all ellipses inscribed in a given triangle. This follows from the facts
that an equilateral triangle has the smallest area among all triangles cir-
cumscribed about a circle and that affine transformations preserve ratios of
areas.

Theorem 4.8. The center of an inscribed conic with perspector P is the
pole of the line PM with respect to the conic passing through A,B,C, M
and P (Figure 4.8).

Proof. This follows from the theorem just proved and Theorem 3.9. a

Finally, consider the pencil of conics tangent to four given lines. Let U,
U’ and V', V' be the foci of two conics from that pencil. Then the points of
each pair of foci are isogonally conjugate with respect to the triangle formed
by any three of the given lines. As was shown in 3.3, this implies that the
intersections of UV with U'V’ and of U’V with UV’ are also isogonally
conjugate with respect to all of these four triangles and therefore are the
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FIGURE 4.8

foci of some conic from the pencil. Since the projections of the focus to the
given lines lie on a circle, it is not difficult to see that the locus of the foci
is a cubic, i.e., a curve of degree three. The correspondence between the
foci of each conic of the pencil gives rise to an involution on that cubic. We
have shown that for any two pairs of the corresponding points U, U’ and
V, V' on the cubic, the intersection of the lines UV and U’V’ also lies on
the cubic. As a limit case, we have that the tangents to the cubic at the
corresponding points U and U’ intersect at the cubic and their intersection
point corresponds to the third intersection point of the cubic with the line
UU’ (Figure 4.9).

Suppose a parabola is inscribed in a triangle. By Theorem 4.7, we have
that the point isotomically conjugate to the perspector of the parabola is a
point at infinity. If the triangle is equilateral, then the isotomic conjugation
coincides with the isogonal conjugation and the image of the line at infinity
is the circumcircle of the triangle. In the general case, we have the preimage
of that circle under an affine transformation making the triangle equilateral,
i.e., the circumscribed Steiner ellipse, whose tangents at the vertices of the
triangle are parallel to the opposite sides. Notice that this ellipse has the
smallest area among all ellipses circumscribed about the given triangle. Thus
we have proved the following.

Theorem 4.9. The locus of the perspectors of the parabolas inscribed in a
gien triangle is the circumscribed Steiner ellipse.

Problem 37. A parabola is tangent to the sides of a triangle at points A’,
B’, and C'. Prove that the intersection of the line passing through C’ and
parallel to the axis of the parabola with the line A’B’ lies on the median
CM..

Problem 38. Prove that the circumscribed and the inscribed Steiner el-
lipses are homothetic. Find the center and the coefficient of the homothety.
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Problem 39. Prove that the locus of the centers of conics passing through
the vertices of a triangle and its centroid is the inscribed Steiner ellipse.

Problem 40. Suppose points P and P’ are isogonally conjugate with re-
spect to a triangle ABC, and let A/, B', C' be the intersections of the sides of
the triangle and the lines connecting P with the centers of the corresponding
excircles. Prove that the lines AA’, BB, CC' and PP’ intersect at a single
point.

Problem 41. Suppose we are given a triangle and the center of a conic
inscribed in it. Determine if the conic is an ellipse or a hyperbola.
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The parabola tangent to four lines.

Since for any five lines (in general position) there is a unique conic to which
these lines are tangent, for any four lines in general position (such a config-
uration is called a complete quadrilateral) no two of which are parallel, there
is a unique parabola to which these lines are tangent. The fifth line in this
case is the line at infinity.

Using Theorems 1.10 and 1.11 we see that for the four triangles formed
by those lines, we have the following two theorems.

Theorem 4.10 (Miquel). Suppose we are given a complete quadrilateral.
Then the circumcircles of the four triangles formed by its lines intersect at
a single point.

This point is called the Miquel point of the complete quadrilateral (Fig-
ure 4.10).

FIGURE 4.10

Proof. Consider the parabola tangent to the sides of our quadrilateral. By
Theorem 1.10, the circumcircles of the corresponding triangles pass through
the focus of the parabola. Therefore the focus is the desired point. a

Theorem 4.11. Suppose we are given a complete quadrilateral. Then the
orthocenters of the four triangles formed by its lines lie on a straight line.
That line is perpendicular to the Gauss line of the quadrilateral.

That line is called the Aubert line of the complete quadrilateral (Fig-
ure 4.11).

Proof. As in the proof of the preceding theorem, consider the parabola
tangent to the sides of the quadrilateral. By Theorem 1.11, the orthocenters
of the corresponding triangles lie on the directrix of that parabola.

We now prove the second part of the theorem. Using the corollary to
Lemma 1.2 and Problem 10, one easily shows that the projection of the
midpoint of a diagonal of the quadrilateral to the directrix is the centroid of
the projections of the tangency points of the quadrilateral and the parabola;
i.e., those three points have the same projection to the directrix. Hence they
all lie on a straight line (this yields another proof of the existence of the
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FIGURE 4.11

Gauss line), which is actually perpendicular to the directrix (and parallel to
the axis of the parabola). a

The above two theorems can easily be proved without using parabolas.
The former is quickly proved by computing the angles; the latter, by using
radical axes. However, the next theorem does not seem to allow for a short
and simple proof without using the inscribed parabola.

Theorem 4.12 (Emelyanov). The Euler circle of the triangle formed by
the diagonals of a complete quadrilateral passes through the Miquel point of
that quadrilateral (Figure 4.12).

FIGURE 4.12
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The proof requires a lemma, dual to Lemma 4.9.

Lemma 4.10 (Dual to Lemma 4.9). If two complete quadrilaterals have
the same diagonals, then there is a conic tangent to all the sides of those
quadrilaterals (obviously, such a conic is unique).

Proof of Theorem 4.12. Consider the midlines of the triangle formed by
the diagonals of the quadrilateral and the line at infinity. Those four lines
form a quadrilateral whose diagonals are nothing but the sides of the tri-
angle. Therefore, by Lemma 4.10, there is a conic tangent to the sides of
the quadrilateral, the line at infinity, and the midlines of the triangle. Since
it is tangent to the line at infinity, it must be a parabola and the Miquel
point of the quadrilateral is the focus of that parabola. The Euler circle is
the circumcircle of the midline triangle whose sides, as we have shown, are
tangent to the parabola, and therefore the Euler circle passes through the
focus of the parabola, i.e., through the Miquel point of the quadrilateral.
Similar arguments show that the center of the circumcircle of the triangle
formed by the diagonals of a complete quadrilateral lies on the Aubert line.
Indeed, the center of the circumcircle is the orthocenter of the midline
triangle whose sides, as we have seen, are tangent to the parabola that is
tangent to the sides of the quadrilateral. Therefore its orthocenter lies on
the directrix of the parabola, which, as shown above, coincides with the
Aubert line of the quadrilateral. O

Notice that for each point P on the Euler circle of a triangle ABC we
can construct a parabola that has focus at that point and whose directrix is
the line passing through the reflections of P in the midlines of the triangle
ABC. Consider any line tangent to that parabola. Suppose it intersects the
sides AB and AC of the triangle at points C; and B;. Suppose also that
the lines CCy and BB; meet at a point @ and that AQ intersects BC at a
point A;. Then, using Lemma 4.10, one easily shows that A; B;, A1C and
the trilinear polar of @ are tangent to the parabola, and therefore P is the
Miquel point of the quadrilateral formed by the sides of the Ceva triangle
of @ and its trilinear polar with respect to the triangle ABC. Hence the
circumcircle of the triangle A; B;C) passes through P.

Thus the set of all tangents to our parabola gives rise to the set of all
points @ such that P is the Miquel point of the sides of the Ceva triangle of
Q and its trilinear polar. This set (in fact, it is a curve of degree four shown
in Figure 4.13), together with the equilateral hyperbola circumscribed about
ABC and centered at P, yields the set of all points whose Ceva circles pass
through P.

The above construction gives a simple proof of yet another rather in-
volved theorem:

Theorem 4.13 (Droz—Farny). Suppose a line l; passing through the or-
thocenter H of a triangle ABC intersects its sides at points A1, By and C.
Another line la, perpendicular to I3 and also passing through H, intersects
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the sides of the triangle at points Ay, By and Ca. Then the midpoints of the
segments A1 Az, B1 By and C1C; lie on a straight line.

FIGURE 4.14

Proof. Consider the parabola tangent to the sides of the triangle and the
line [;. By Theorems 1.11 and 1.7, the tangent to that parabola pass-
ing through H and different from [; is perpendicular to {3, and therefore
it coincides with l;. By Theorem 1.10, the circumcircles of the triangles
Ay1AsH, B1BsH and C;C2H pass through the focus F' of the parabola.



4.3. NORMALS TO CONICS. JOACHIMSTAHL’S CIRCLE 113

Hence the centers of those circles lie on the midpoint perpendicular to F'H.
Since all these triangles are right, the centers of their circumcircles are the
midpoints of the hypotenuses, i.e., of the segments A; A3, By By and C1C>
(Figure 4.14).} a

When a point P moves along the circumcircle of the triangle, the mid-
point perpendiculars to PH are tangent to the conic with foci at H and
O inscribed in the triangle (this follows from the construction described in
Theorem 3.4). Thus we have also proved that all those lines envelop the
conic with foci at O and H inscribed in the triangle.

We remark that the above theorem easily follows from Problem 18 at the
end of 3.1. For the centrally symmetric triangle we take the triangle whose
vertices are the reflections of the center of the circumcircle in the sides of the
triangle. Each line obtained this way gives rise to two perpendicular lines
passing through the orthocenter and generating the line from the Droz—
Farny theorem. The existence of those two lines can easily be proved by
computing the angles.

4.3. Normals to conics. Joachimstahl’s circle

Definition. Suppose we are given a conic and a point P on it. The normal
to the conic at P is the line passing through P and perpendicular to the
tangent to the conic at P.

Given an arbitrary point not on the conic, one has four (possibly com-
plex) normals to the conic passing through that point. It turns out that the
feet of those normals have the following property.

Theorem 4.14. Let Py, P, P3, Py be four points of a conic a with center
O. Suppose the normals at those points pass through a single point Q. Then
P, P, P3, Py, O, Q lie on an equilateral hyperbola whose asymptotes are
parallel to the azxes of the conic.

Proof. Given an arbitrary circle w with center @, consider the locus of the
centers of the conics from the pencil generated by the circle and the conic
a. By Theorem 3.17, it is a conic and, since the pencil contains a circle, it
is an equilateral hyperbola (see Problem 29). We denote it v (Figure 4.15).
The infinite points of the hyperbola v are the fixed points of the involution
defined by the pencil on the line at infinity, i.e., the points of the axes of a.
Any point X on + is the center of a conic from the pencil. Its polar with
respect to the conic is the line at infinity, and therefore, by Theorem 3.15,
the polars of X with respect to all conics of the pencil are parallel. Since
the line QX is perpendicular to the polar of X with respect to the circle w,
it is also perpendicular to the polar of X with respect to the conic a. Hence

IThe last part of the proof is a special case of Problem 7 at the end of Chapter 1.
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if P belongs to the intersection of a and <, then the tangent to o at P is
perpendicular to QP, and therefore QP is the normal to a.

Moreover, it is easy to recover the tangent to v at O. The direction
conjugate to the direction of the tangent with respect to a must be perpen-
dicular to QO. Therefore the hyperbola v does not depend on the radius of
the circle w because the latter can be defined as the conic passing through
Q, two points of the line at infinity (through which the axes of o pass), and
the point O, and which is also tangent at O to the corresponding line. It
now follows that there are no other points P such that PQ is normal to a.
Therefore any such point can be obtained by the foregoing construction if
w is the circle with center @ and radius QP. O

The constructed hyperbola is called the Apollonius hyperbola of o with
respect to Q. The midpoints of the sides of the quadrilateral whose vertices
are the intersection points of w and a, lie on « and form a parallelogram
whose center coincides with that of v and with the centroid of the quadri-
lateral. Hence the centroid of the intersection is the center of v and does
not depend on the radius of the circle.

Theorem 4.15. The points P;, P, P3 and the point symmetric to Py with
respect to the center of the conic lie on a circle.

FIGURE 4.16
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Proof. Consider the case where the given conic is an ellipse. Let P’ be the
point symmetric to Py with respect to O (Figure 4.16). The assertion of the
theorem is equivalent to the statement that the conic of the centers of the
pencil determined by Py, P, P3, P’ is an equilateral hyperbola. Consider
the compression to the minor axis of the ellipse transforming it into a circle.
Since affine transformations take centers of conics into centers of conics, the
locus in question also transforms into a conic and, in fact, into an equilateral
hyperbola, since the new pencil contains a circle (the image of the original
ellipse). This hyperbola contains the images of O (i.e., O itself) and of the
midpoints of the segments P’ P, P' P, P' P3. The homothety with respect to
the image of P’ and with coefficient 2 transforms those points into the points
Py, P1, P, and P;. But since there is only one equilateral hyperbola passing
through the images of Py, P;, P, and Ps3, it must be the corresponding
Apollonius hyperbola (under the compression it is taken into an equilateral
hyperbola, because its asymptotes run in the directions of the axes of the
ellipse); i.e., the conic of the centers of the pencil determined by Py, P, P,
P’ is homothetic to the Apollonius hyperbola passing through Py, P>, P,
Py, and is therefore an equilateral hyperbola. a

The circle mentioned in the theorem is called Joachimstahl’s circle.

Using complex affine transformations, one can also prove Theorem 4.15
for hyperbolas. In the case where the conic is a parabola, one of the four feet
of the normals passing through the given point is at infinity. Accordingly,
Theorem 4.15 is stated as follows:

The feet of the three normals to a parabola passing through a given point
and the vertex of the parabola lie on a circle (Figure 4.17).

FIGURE 4.17

4.4. The Poncelet theorem for confocal ellipses

Suppose we are given a circle with center at one of the foci of confocal conics.
Applying first the polar correspondence and then the inversion with respect
to the circle, we transform the confocal conics into concentric circles. Hence
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the polar circles also form a pencil. Therefore the confocal conics form the
dual pencil.

We consider two confocal ellipses such that there is a polygon inscribed in
the larger ellipse and circumscribed about the smaller ellipse (Figure 4.18).
By the Poncelet theorem, there are infinitely many such polygons (if there
is at least one). It turns out that they have some interesting properties.

In 1.4 we established the following fact. Suppose a string is put on an
ellipse a which is then pulled tight using a pencil. If the pencil is rotated
about the ellipse, it will traverse another ellipse confocal with a.

As an important consequence of this fact we have the following theorem.

Theorem 4.16. If a convex n-gon is inscribed in a given ellipse a and has
the longest perimeter among all such n-gons, then it is circumscribed about
an ellipse oy, confocal with a.

FIGURE 4.18

Proof. Let MiM,... M, be a polygon with the longest perimeter. We
shall prove that for each ¢ = 1,2,...,n, the bisector of the exterior angle
M;_1M; M, is tangent to a at M;.

FIGURE 4.19

Suppose this is not the case. Let o/ be the ellipse with foci M;_; and
M; 11 that passes through M; (Figure 4.19). Then the tangent to o/, which
is also the bisector of the exterior angle M;_; M;M;,, intersects a at some
other point M;. But the sum M;_1 M, + M; 1M, is larger than M;_1 M, +
M; 1 M;, since M, is outside the ellipse /. Thus we have a convex n-gon
MiMsy.. . M;_1M;M;,; ... M, whose perimeter is longer than the perimeter
of MiM, ... M,. But this contradicts our choice of the polygon.
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Now we show that an ellipse can be inscribed in the n-gon M1 My ... M,,.
Let F; and F5 be the foci of the ellipse a. Consider the ellipse K, that has
the same foci and is tangent to the line M;Ms;. The angle between the
second tangent to oy, passing through My and My F; equals ZFy My M;. But
such a line must be the line MsMj since the angles MsMsM; and Fy M3 F5
have equal exterior bisectors (the tangent to a at Ma).

Similarly, examining the vertex M3, we see that «, is tangent to M3My,
etc.

By the Poncelet theorem, the polygon MjMs... M, can be “rotated”
between a and ay,. We show that the perimeter of the polygon does not
change under this rotation.

Indeed, that perimeter can easily be computed. Let @; be the tangency
points of a;, and the sides M;M; ;. By Theorem 1.6, for an arbitrary point
M on a, the quantity MX + MY+ « XY, where MX and MY are the
tangents to ay, does not depend on M. Hence C = Q;—1M; + M;Q;+ -
Q;Q;—1 does not depend on M;. Computing the sum of the lengths of such
loops for each M;, we have nC. Each side of the polygon will be counted
once, whereas the arcs of the ellipse are counted n — 1 times (the shortest of
the two arcs Q;Q;+1 belongs to all loops except for the loop corresponding
to M;y1). Thus the perimeter of the n-gon Mj My ... M, is equal to the
difference between nC and the perimeter of the ellipse o, counted n — 1
times. Therefore it does not change under the rotation. a

A convex Poncelet n-gon inscribed in one of the two confocal ellipses and
circumscribed about the other has yet another extremal property, which in
a sense is “dual” to the one established in Theorem 4.16.

Theorem 4.17. A convezr n-gon circumscribed about a given ellipse o has
the shortest perimeter among all such n-gons if and only if all of its vertices
lie on an ellipse confocal with o.

Proof. Fix the tangency points M;_j, M;+; of the sides of the polygon
and the ellipse. Let T be the intersection of the tangents at those points
(Figure 4.20). For the sake of definiteness, suppose that the arc M;_; M,
is less than half of the ellipse. We want to find a point M; on it such
that the length of the polygonal line M; 3 XY M;,;, where X and Y are
the intersection points of the tangent passing through M; with TM;
and TM;,,, is the least possible. Let X’ and Y’ be the tangency points
of the incircle of the triangle TXY and its sides TY and TX. Then
M; 1 XY M;y1 = M;_1Y' + X'M; 4, i.e., the desired minimum is attained
when the incircle is of largest possible radius. Therefore the incircle and the
ellipse are tangent to the line XY at the same point but on the opposite
sides. Thus, by Theorem 3.16, the center O of the ellipse lies on the line
IT’', where I is the center of the incircle of the triangle TXY and T” is the
midpoint of XY

Let F; and F; be the foci of the given ellipse. Since it is inscribed
in the triangle TXY, the lines F1X and F»X form equal angles with the
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FIGURE 4.20

line I X, and the lines F1Y and F»Y form equal angles with the line IY.
Moreover, the line connecting the midpoints of the segments F} F» and XY
passes through I. We now invoke Problem 26 (in 3.3). Since the angle XY
is obtuse, the lengths of the polygonal lines F; X F» and F1Y F; are equal,
i.e., X and Y lie on an ellipse confocal with K. This, obviously, implies the
assertion of the theorem.

The case where the arc M;_;M;,; is longer than half of the ellipse is
argued similarly except that the incircle of the triangle TXY must be re-
placed by an excircle. Finally, if M;_; and M;; are antipodal points, then
the desired assertion is established by passing to limit or by deducing it from
the fact that the sum of the sides of a parallelogram circumscribed about an
ellipse cannot be less than the sum of its axes. This last assertion, in turn,
can be proved by a simple calculation. a

Problem 42. Suppose that an ellipse and a circle are externally tangent
to each other and that their common tangents are parallel. Prove that the
distance between their centers equals the sum of the semiaxes of the ellipse.






Chapter 5

Solutions to the Problems

1. This equation defines a curve of order two because it is equivalent to the
equation zy = 1. Since

2y = 1(@+2) - (- v)?),
in coordinates £ = x + y and ( = x — y this hyperbola has the equation
¢ ¢
-2 =1
4 4

Let us find its foci. Suppose a point X moves along the hyperbola
toward infinity. Then the lines F; X and F5X will tend to becoming parallel
(where Fj and F; are the foci of the hyperbola), and therefore the quantity
|F1X — F>X| equals the length of the projection of the segment Fj F> to the
axis Oz. On the other hand, it also equals the real axis of the hyperbola,
i.e., 2v/2. Since the angle between FyF, and Oz equals 45°, the quantity
F\F, equals 2v2 - 2 = 4. Hence OF, = OF; = 2 and therefore F; has
coordinates (v/2,v/2) and F, has coordinates (—v/2, —v/2).

2. Connect the tangency points and the vertices of the polygon with F'.
Color the obtained angles containing black sides, red and containing white
sides, blue. By Theorem 1.4, the angles at the same vertex of the polygon
are equal and have different colors. Hence the sum of the red angles equals
the sum of the blue angles, i.e., 180°.

3. The assumption implies that the lines symmetric to the diagonal AC
with respect to the bisectors of the angles A and C intersect at a single
point P of the diagonal BD. Applying the sine theorem to triangles ABP,

ADP, ABL and ADL, where L is the intersection of the diagonals, we have

BL BP _ AB? st BL BP _ CB? AB _ CB
PLDP = apz- Similarly, 57 55 = Gpz- Therefore 25 = 55, whence the

desired assertion.

4. The eccentricity of all equilateral hyperbolas obviously equals /2
(check this!). Hence the directrices of the hyperbolas in question are at a
distance FP/v/2 away from P. Therefore they are tangent to the circle w
with center P and radius FP/ V2. Tt is easy to see that they envelop the
entire circle (because each tangent to the circle gives rise to an equilateral

119
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hyperbola with focus P and directrix the tangent). On the other hand, the
directrices are taken into asymptotes under a rotational homothety centered
at F (with rotation through £45° and the coefficient of homothety 1/+/2).
Hence all asymptotes of such equilateral hyperbolas will be tangent to one
of the two circles obtained from w by the above homothety (see Figure 5.1).
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FIGURE 5.1

5. Let X’ denote the projection of X to the directrix of the parabola.
Notice that FY || XX’ and XY || X'F (both lines are perpendicular to
the tangent to the parabola at X). Thus XY FX’ is a parallelogram, and
therefore the length of Y'Z equals X’F’, where F' is the projection of F
to XX’. But the length of the segment X’F’ is constant and equals the
distance from the focus to the directrix of the parabola (see Figure 5.2).

FIGURE 5.2

6. Let X and Y denote the positions of the travelers and A the intersec-
tion of the roads. The intersection point of the midpoint perpendiculars to
AX and AY moves along some line ! (since its projections to the roads move
with constant speed). At all times, the circumcircle of the triangle AXY
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passes through the reflection A’ of A in . Consider the parabola tangent to
the sides of the triangle AXY with focus A’. Its directrix is the line passing
through the reflections of A’ in AX and AY. But those points are fixed.
Hence the directrix and the focus of the parabola are fixed and therefore the
parabola itself is fixed and tangent to XY

7. Suppose the line tangent to the parabola intersects AP and AQ at
points X and Y. Let M be the midpoint of XY. Then, by Theorem 1.10,
the circumcircle of the triangle AXY passes through the focus F' of the
parabola. Notice that the angles of the triangle X F'Y do not depend on the
position of the tangent. Therefore the angle X M F and the ratio % are
also constant. Thus X transforms into M under the rotational homothety
with center F, rotation angle X M F, and coeflicient I{f—ﬁ Hence M moves
along the line which is the image of AP under this homothety.

8. Apply a projective transformation taking P to the centroid of a
triangle ABC. Then the points A’, B’ and C’ will move to infinity and will
therefore lie on a line.

Similarly, one can show that for any line (not passing through the vertices
of the triangle) there is a unique trilinear pole, i.e., a point for which that
line is the trilinear polar.

9. Apply an affine transformation such that the line becomes parallel
to one of the axes of the hyperbola. Then the desired equality would follow
from symmetry. But since the segments in question lie on a line, their images
under the affine transformation will also be equal.

10. Apply an affine transformation taking the lines in question to lines
parallel to the directrix of the parabola. Then the line connecting the mid-
points of the segments AB and CD will, obviously, become the axis of the
parabola. But the affine transformation preserves the lines parallel to the
axis of the parabola (as a set). These are the lines passing through the
tangency point of the parabola and the line at infinity.

11. If C lies inside the circle, then use a projective transformation to
take it to the center. It is easy to see that the images of the points D and
FE are symmetric with respect to the center, i.e., C, and therefore C, D, and
E lie on a straight line.

If C is outside the circle, then use a projective transformation that takes
it to a point at infinity.

12. Use an affine transformation taking the ellipse to a circle. Then
all the circles in question become ellipses. Those ellipses are similar (i.e.,
the ratio of the minor and major semiaxes is the same) and positioned the
same way (the corresponding axes are parallel). We need to show that they
are of equal “size”. The conjugate diameters of the original ellipse become
perpendicular diameters of our circle. It remains to invoke the result of 1.4.
If the ellipses were of different “sizes”, then the radii of the circles from the
points of which they are seen at a right angle would also be different. But
all those radii equal the radius of our big circle (Figure 5.3).
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FIGURE 5.3

13. Let O be the center of the circumcircle of the triangle ABC. By
the sine theorem, the radius OA of that circle and the angle BOC do not
change. Therefore the length of the segment OP does not change (see Figure
5.4). Moreover, the direction of the bisector of the exterior angle AOP does
not change because the bisector of the angle AOB is always perpendicular
to AB and the angle BOP does not change. Let P’ be the reflection of P
in that bisector. Then P’ lies on the line OA and the length of the segment
AP’ is constant. Hence the projections of AP and AP’ to a line parallel
to the exterior bisector of the angle AOP are equal and the projection of
AP to a line parallel to the interior bisector of the angle AOP equals the
projection of AP’ to the same line multiplied by ﬁg:_g};. Therefore P moves
along an ellipse obtained by squeezing the circle with center A and radius
AP’ by a factor ’28 +8£ toward the line parallel to the exterior bisector of
the angle AOP.

FIGURE 5.4

14. Assume first that the conic intersecting the triangle at the points
in question is a circle. Then, for example, BA; - BAy = BC) - BC5. Hence
this ratio equals 1. It now immediately follows that if the conic is an ellipse,
then this quantity is also preserved, since an affine transformation taking
that ellipse into a circle does not change the ratio (“we multiply and divide
by two collinear segments”). This argument does not work for a hyperbola,
since there is no affine transformation taking a circle to a hyperbola. But
this can be done by a projective transformation.
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We shall show that under a projective transformation the above quantity
does not change.

Each projective transformation is a central projection. Let P be the
center of that projection. Then

BA,-BAy  SapBa, - SAPBa,
CA;-CAs  Sapca,  SAPCA,
__(PB-PA; -sin/BPA;)-(PB- PA; -sin /ZBPAj)
~ (PC-PA; -sin ZCPA;) - (PC - PAs -sin ZCPAy)
_ PB? sin ZBPA, -sin ZBPA,
~ PC? sin/CPA, -sinZ/CPA;’
Multiplying the similar equalities for the remaining two sides we have:
BA,-BAy; CB;-CBy; AC;-AC,
CA,-CA; AB;-AB; BC;-BC,
_ (P32 ' sin ZBPA; - sin ABPAg) . (P02 ) sin ZCPB; -sin éCPBz)
PC? sin ZCPA; -sin ZCPA; PA? sin/APB; -sin /APB,
‘ (PA2 _sin ZAPC, -sin ZAPCg)
PB? sin /BPC; -sin ZBPCs
_ (sin /BPA; -sin/BPAy ) ) (sin /CPB; -sin ZCPBy )
sin ZCPA; -sin ZCPAy sin ZAPB; -sin ZAPB,
( sin ZAPC, - sin ZAPC, ) .
sin /BPC} - sin ZBPC»

But it is not difficult to see that this quantity does not depend on the
plane of projection. Thus the equality also holds for a hyperbola.

It remains to show that if the points satisfy this condition, then they lie
on a conic. Consider the conic passing through five of the six points, say,
all except Cy. That conic must intersect AB at some other point C, besides
Ci. The chosen five points and C; satisfy the given condition. It is easy
to see that this condition uniquely determines Cj, and therefore the latter
must coincide with Cs.

15. Apply a projective transformation taking the intersections of the
ellipses to the vertices of a square. Then the center O of the square is also
the common center of the ellipses and therefore their common tangents are
also pairwise centrally symmetric with respect to O.

16. Let A; be the intersection of the diagonals AC and FB. Define
points By, ..., F1 similarly (Figure 5.5).

By Pascal’s theorem, the intersection P of the lines AD and FC lies on
the line F1C;. Let @Q be the intersection of the lines AD; and B; F. Then,
by Pappus’ theorem, C;, P and @ lie on a straight line. Using Pappus’
theorem for the points A, A, B; and F, Fy, D;, we see that the same line
contains the intersection point of the lines A;D; and By FE;. Thus the lines
A1D,, B1Ey and C1 F; intersect at a single point. Now, by the converse of
Brianchon’s theorem, the hexagon Ay B1C; D1 E;F; is circumscribed about
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FIGURE 5.5

the conic. Notice that our proof does now use any specific order of the
points.

Based on this we can now prove the Poncelet theorem for triangles.
Suppose a triangle ABC is inscribed in a conic a; and circumscribed about
a conic ag. Take an arbitrary point D on oy which is outside oo and draw
tangents to ag. Suppose they intersect o again at points E and F. We
need to show that E'F is tangent to az. As we have shown, there is a conic
tangent to the lines AB, BC, CA, DE, EF and FD. On the other hand,
there is a unique conic tangent to the five lines AB, BC, CA, DE, DF', and
this is ag. Therefore EF is also tangent to ag, which is the desired claim.

17. Hint. The quadrilateral formed by the given lines and the asymp-
totes is circumscribed about the hyperbola.

18. By the converse of Brianchon’s theorem, there is a conic tangent to
the sides of both triangles. Suppose an arbitrary line tangent to that conic
intersects AC in P and BC in Q. It suffices to show that the lines PB’ and
QA’ are parallel. But this follows from Brianchon’s theorem applied to the
hexagon A’B’XQPY, circumscribed about the same conic, where X and Y
are the infinite points of the lines BC and AC.

19. Let X and Y be two points on the line at infinity whose correspond-
ing directions are perpendicular. Draw the lines: through A and B, parallel
to the direction of X, and through C and H, parallel to the direction of Y.
Let UV be the diagonal formed by those lines of the rectangle and B’ the
foot of the triangle’s height dropped from B (Figure 5.6).

Since the quadrilaterals BB'CV and AUB'H are inscribed in the circles
with diameters BC and AH, we have ZAB'U = ZAHU and ZVB'C =
ZVBC. But ZAHU = ZV BC as the angles with perpendicular sides, and
therefore U, B’, V lie on a straight line. By the converse of Pascal’s theorem,
the hexagon AX BHY C is inscribed in a conic, i.e., the equilateral hyperbola
ABCXY passes through H.

Conversely, suppose the conic passes through A, B, C and H. Since A,
B, C, H are not the vertices of a convex quadrilateral, that conic must be a
hyperbola. If X is one of the points of its intersection with the line at infinity,
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FIGURE 5.6

and Y is the point at infinity corresponding to the perpendicular direction,
then Y also belongs to the conic. Therefore the conic is an equilateral
hyperbola.

20. Hint. One can use Sondat’s theorem, asserting that if two triangles
are in perspective (i.e., the lines connecting their corresponding vertices in-
tersect at a single point) and are orthologic (i.e., the perpendiculars dropped
from the vertices of each triangle to the sides of the other intersect at a sin-
gle point), then the centers of perspective and orthology lie on a straight
line. As a consequence of this theorem, one easily deduces that orthologic
triangles with coinciding orthology centers are in perspective. The assertion
of the problem is a special case of the latter. Notice also that if the conic
is a circle and its interior points are viewed as points of the Klein model of
Lobachevsky geometry, then the assertion of the problem becomes an analog
of the theorem that the heights of a triangle intersect at a single point.

The assertion of the problem admits an alternative formulation: two
triangles are in perspective if and only if they are polar to each other (i.e.,
there is a conic such that the polar correspondence with respect to that conic
takes the vertices of one triangle to the sides of the other and vice versa;
that conic may be imaginary). For the proof it suffices to transform the axis
of perspective of the triangles to the line at infinity, so that they become
homothetic, and then use an affine transformation (possibly, imaginary) to
take the center of homothety to the common orthocenter.

21. The center of a conic is the polar of the line at infinity with respect
to that conic. Hence their preimages with respect to w are a polar and a
pole with respect to a. But the preimage of the line at infinity is the center
of w.

22. 1. Suppose a line intersects the hyperbola at points A and B and
its asymptotes at points X and Y. Since AX = BY, the midpoints of the
segments AB and XY coincide and the line connecting the midpoint of AB
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with the center O of the hyperbola is a median of the right triangle OXY.
Hence it forms the same angles with the asymptotes of the hyperbola as the
line AB.

2. Let P be an intersection point of two equilateral hyperbolas with
center O. Since the tangents to the hyperbolas at that point are symmetric
to OP with respect to lines parallel to the asymptotes, the angle between
them is twice as large as the angle between the asymptotes.

23. Apply the polar transformation with respect to a circle centered at
the center O of the ellipse. Then the sides of a rhombus will transform into
points from which the image of the ellipse (which is also an ellipse) is seen at
a right angle. By Theorem 1.5, this is a circle also centered at O. Therefore
its image, i.e., the envelope of all the rhombi, is a circle with center O.

24. The circle and the hyperbola form a double tangent pencil. Under
the polar correspondence with respect to the circle the hyperbola transforms
into a conic from that pencil. The points at infinity of that conic are the im-
ages of the asymptotes of the hyperbola, which, obviously, coincide with the
points at infinity of the hyperbola. Therefore the hyperbola is transformed
into itself.

We shall now show that the circle is self-polar, too, with respect to the
hyperbola. Choose two perpendicular lines in space and consider the two
cones of revolution obtained by rotating the lines about the bisectors of the
angles between them. Those lines are common rulings of the cones along
which the cones are tangent to each other. Given a plane perpendicular to
the axis of one of the cones, the cross-section of that cone is a circle and the
cross-section of the other is an equilateral hyperbola tangent to the circle
at its vertices (Figure 5.7). Therefore there is a projective transformation
interchanging the circle and the hyperbola. Moreover, it preserves self-
polarity.

Notice also that if a secant plane is perpendicular to the common ruling
of the cones, then the cross-sections are equal parabolas tangent to each
other at their vertices. Hence such parabolas are also self-polar with respect
to each other.

25. Since T lies on the Gauss line, it is the center of a conic inscribed
in the quadrilateral. Suppose the quadrilateral is not circumscribed; then
that conic is not a circle, i.e., the distance from its center to the tangent
takes any value at most four times. By assumption, the opposite sides of
the quadrilateral are equidistant from the center. Hence either at least one
pair consists of parallel sides and the quadrilateral is a trapezoid, or the
sides in each pair are symmetric with respect to one of the axes of the conic.
Those axes cannot coincide, because otherwise a circle could be inscribed
in the quadrilateral. Hence the bisectors of the angles between the opposite
sides of the quadrilateral are perpendicular, which is equivalent to its being
inscribed. The converse for an inscribed quadrilateral is proved similarly,
and for a circumscribed quadrilateral and a trapezoid it is obvious.
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FIGURE 5.7

26. In fact, this is a reformulation of the previous problem. Indeed, O is
equidistant from the opposite sides of the quadrilateral formed by the lines
AX, AY, BX, BY (in this order). The condition that C, Z and O lie on a
straight line is equivalent to O lying on the Gauss line. The quadrilateral in
question is not a trapezoid, and therefore it is either inscribed, and then the
angle O is right, or it is circumscribed, and then the lengths of the polygonal
lines are equal. The proof of the converse statements is not difficult.

27. Since for any two circles two of the four intersection points are
infinite (and imaginary), the desired assertion follows at once from the three
conics theorem.

28. Hint. The points in question belong to the locus of the centers of
the conics from the pencil generated by the vertices of the quadrilateral.

29. Hint. The axes of the parabolas circumscribed about the quadri-
lateral are perpendicular if and only if the quadrilateral is inscribed.

30. Hint. Use the dual to the theorem on four conics.

31. By Theorem 3.21, one of the eccentricities must be larger than 1 and
the corresponding conic is an ellipse, whereas the other eccentricity must be
smaller than 1, and therefore the conic is a hyperbola. Henceforth we refer
to them as the ellipse and the hyperbola. Let F’ be the projection of F to [
and S the midpoint of the segment FF’'. Let E; and E5 be the intersection
points of the line FF’ with the ellipse and H; and H with the hyperbola.
Since the eccentricities of the ellipse and the hyperbola are reciprocal, the
points Fy and E» are symmetric to H; and Hy with respect to S. Therefore
the centers of the ellipse and the hyperbola are symmetric with respect to S.
Those centers are the midpoints of E; F5 and Hj Ha, respectively. Therefore
the reflections of F' in the midpoints of FyFE2 and HyHj (these points are
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symmetric with respect to S) are symmetric with respect to F’. But these
two points are, obviously, the other foci of our conics.

32. Suppose the locus in question is not empty. Then Z/ZBAP = ZBCP
and ZDAP = /DCP and therefore ZA = ZC. Similarly, ZB = ZD, i.e.,
ABCD is a parallelogram. On the other hand, if ABCD is a parallelogram
and the radii of the circumcircles of the triangles ABP and BCP are equal,
then the equality ZBAP = /BCP implies that P lies on the equilateral
hyperbola centered at the midpoint of the segment AC and passing through
A, B and C. Since D lies on the same hyperbola, P satisfies the condition.

33. Since Q lies on the circumcircle of the triangle ABC, its reflection in
the center of the equilateral hyperbola circumscribed about the quadrilateral
QABC is the orthocenter of that triangle. Therefore P is the orthocenter of
the triangle ABC'. By construction, it is also the center of the circumcircle.
But the orthocenter and the center of the circumcircle coincide only if the
triangle is equilateral.

34. Let K, L, M and N be the midpoints of the segments AB, BC, CD
and AD, respectively. Let O be the center of the circumcircle and Hy the
orthocenter of the triangle ABC. The proof of Theorem 4.1 implies that P
is the midpoint of the segment DHy. It is easy to see that the line OK is
parallel to the line AHy, which, in turn, is parallel to the line PM. Similarly,
the line OL is parallel to PN. This means that P and O are symmetric with
respect to the center of the parallelogram KLMN. But the center of that
parallelogram is the centroid of the quadrilateral ABCD.

35. Suppose the points lie on a conic. Apply a projective transforma-
tion taking the line A’B’ to the line at infinity, and then apply an affine
transformation to make C’ the orthocenter of the triangle ABC. Then the
conic passing through the given points is an equilateral hyperbola, i.e., the
directions determined by A’ and B’ are perpendicular. Since C’ is the or-
thocenter of the triangle ABC, there is a circle (possibly, imaginary) with
respect to which the triangle ABC is self-polar. As the lines A’C’ and B'C’
are perpendicular, the triangle A’ B’'C’ is also self-polar with respect to that
circle.

Conversely, suppose triangles ABC and A’B'C’ are self-polar with re-
spect to a conic. Transform that conic to a circle and C’ to its center. Then
C’ becomes the orthocenter of the triangle ABC, and A’ and B’ become
points at infinity with perpendicular directions. Therefore the equilateral
hyperbola passing through A, B, C,C’ with asymptotes parallel to those di-
rections is the desired conic.

36. Suppose a conic passing through the points A, B, C and O intersects
the line at infinity at points P and @. Similar to the previous problem, one
proves that the triangle POQ is self-polar with respect to the same conic o
as the triangle ABC. Hence the fixed points of the involution induced on
the line at infinity by the pencil ABCO are the points of intersection with
. But this means that the midpoint conic passing through those points is
homothetic to a.
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37. Hint. Brianchon’s theorem implies that the diagonals of the quadri-
lateral circumscribed about a conic and the lines connecting the tangency
points of the conic with its opposite sides intersect at a single point. Apply-
ing this observation to the quadrilateral formed by the sides of the triangle
ABC and the line at infinity, we have the desired assertion.

38. Answer. The center of the homothety is the centroid of the triangle,
and the coefficient is 2.

39. The preceding problem implies that the midpoints of the segments
connecting the centroid with the vertices lie on the Steiner ellipse. Therefore
that ellipse has six common points with the conic of the centers (that this is
indeed a conic follows from Theorem 3.17). Those points are the midpoints
of the sides and of the segments.

40. Let I, I and I; be the centers of the excircles of the triangle
ABC. Since ABC is the orthotriangle of the triangle I, IyI., the polars of
P with respect to the equilateral hyperbolas passing through I, I and I,
pass through P’. By Theorem 3.9, the lines AA’, BB’ and CC’ intersect at
a single point, which is the pole of the line PI, where I is the center of the
incircle of the triangle ABC, with respect to the conic I,II.IP. But that
conic is an equilateral hyperbola so that the obtained point lies on PP’.

41. Any point in the plane can be the perspector of a conic inscribed
in the given triangle, and such a conic is unique. It is clear that the conic
changes continuously as the perspector moves. Therefore the perspectors of
ellipses lie inside the circumscribed Steiner ellipse, whereas the perspectors
of hyperbolas lie outside. Now apply Theorem 4.7. Under the isotomic
conjugation, the interior of the triangle will transform into itself, and the
points of the segment bounded, for example, by the side AB of the triangle
and the arc of the ellipse subtended by it and not containing the third
vertex C will transform into the points of the angle vertical to the angle C.
Accordingly, the set of centers of the inscribed ellipses is the interior of the
midline triangle and the three angles vertical to its angles.

42. Let X and Y be the tangency points of the ellipse and the parallel
tangents, T' the tangency point of the ellipse and the circle, U and V the
intersection points of the tangent to the ellipse at T" and the parallel tangents,
and U’ and V"’ the intersection points of the parallel tangents and some other
tangent to the ellipse. Arguing as in the proof of the last theorem, we see
that XU +UV + VY < XU' +U'V' + V'Y, i.e., U and V lie on an ellipse
confocal with the given ellipse. Moreover, OU and OV, where O is the
center of the circle, are tangent to that ellipse and ZUOV = 90°. Therefore
O lies on the circle centered at the center of the ellipse whose radius equals
the sum of the semiaxes of the ellipse.
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