
XI GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN
THE CORRESPONDENCE ROUND. SOLUTIONS

1. (T.Kazitzyna) Tanya cut out a convex polygon from the paper, folded it several times
and obtained a two-layers quadrilateral. Can the cut polygon be a heptagon?

Solution. Yes, for example let angle B of a quadrilateral ABCD be obtuse, and three
remaining angles be acute. Take a point K on side CD such that ∠CBK < 180◦ − ∠B.
Let points B1, K1 be symmetric to B, K about AD, and point K2 be symmetric to K
about BC. Then a heptagon ABK2CDK1B1 is convex, and folding it by lines BC and
AD, we obtain two-layers quadrilateral ABCD (fig.1).
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2. (M.Rozhkova) Let O and H be the circumcenter and the orthocenter of a triangle ABC
respectively. The line passing through the midpoint of OH and parallel to BC meets AB
and AC at points D and E respectively. It is known that O is the incenter of triangle
ADE. Find the angles of ABC.

Answer. ∠A = 36◦, ∠B = ∠C = 72◦.

Solution. By the condition we obtain that AO is the bisector of angle A, i.e. AB = AC.
Then ODHE is a rhombus, ∠ODH = 2∠ODE = ∠B, ∠DOH = ∠DHO = 90◦ − ∠B

2
=

∠BHD.

Let the line passing through H and parallel to AC meet AB at point K. Since ∠HKB =
∠A = ∠HOB, points H, O, K, B are concyclic. Since angle KHB is right, the center of
the corresponding circle lies on AB, thus it coincides with D (fig.2). Therefore, ∠HBD =
∠BHD = 90◦ − ∠B

2
. On the other hand this angle is equal to ∠B − ∠A

2
, from this we

obtain the answer.
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3. (N.Moskvitin) The side AD of a square ABCD is the base of an obtuse-angled isosceles
triangle AED with vertex E lying inside the square. Let AF be a diameter of the
circumcircle of this triangle, and G be a point on CD such that CG = DF . Prove
that angle BGE is less than half of angle AED.

Solution. It is clear that F lies on sideline CD. Since CG = DF , we have FG = CD =
AB, i.e. ABGF is a parallelogram, and ∠BGD = 180◦−∠AFD = ∠AED. Thus we have
to prove that ∠BGE < ∠EGD or the distance from E to BG is less than its distance
to CD. But the distances from E to CD and AF are equal, because FE bisects angle
DFA, thus it is sufficient to prove that E is closer to BG, than to AF .

A line through E parallel to AB meets AF at the center O of circle AED (fig.3). Therefore,
EO > AD/2 = AB/2, which is equivalent to the desired inequality.
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4. (L.Shteyngarts) In a parallelogram ABCD the trisectors of angles A and B are drawn.
Let O be the common points of the trisectors nearest to AB. Let AO meet the second
trisector of angle B at point A1, and let BO meet the second trisector of angle A at point
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B1. Let M be the midpoint of A1B1. Line MO meets AB at point N . Prove that triangle
A1B1N is equilateral.

Solution. Let K be a common point of two remote trisectors. Then in triangle ABK
∠K = 60◦, and AA1 and BB1 are its bisectors. Since ∠A1OB1 = 120◦, quadrilateral
A1KB1O is cyclic, and since KO bisects angle K, we obtain that OA1 = OB1. Therefore,
∠MOA1 = 60◦ = ∠A1OB = ∠BON . This yields that ON = OA1 and A1N = A1B1 =
B1N (fig.4).
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5. (V.Yassinsky) Let a triangle ABC be given. Two circles passing through A touch BC at
points B and C respectively. Let D be the second common point of these circles (A is
closer to BC than D). It is known that BC = 2BD. Prove that ∠DAB = 2∠ADB.

Solution. Since AD is a radical axis of two circles it meets segment BC at its midpoint
M . Then BM = BD and ∠ADB = ∠DMB. But ∠ABM = ∠ADB as the angle between
the chord and the tangent. By the exterior angle theorem ∠DAB = ∠ABM +∠AMB =
2∠ADB (fig.5).
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6. (A.Zaslavsky) Let AA′, BB′ and CC ′ be the altitudes of an acute-angled triangle ABC.
Points Ca, Cb are symmetric to C ′ about AA′ and BB′ respectively. Points Ab, Ac, Bc,
Ba are defined similarly. Prove that lines AbBa, BcCb and CaAc are parallel.

First solution. Firstly prove next lemma.

Let points Y ′, X ′ on sides XZ, Y Z of triangle XY Z be such that XY ′ = XY = X ′Y .
Then X ′Y ′ ⊥ OI, where O and I are the circumcenter and the incenter of the triangle.

To prove the lemma it is sufficient to see that X ′O2−Y ′O2 = X ′I2−Y ′I2. Let x, y, z be
the sidelengths of Y Z, ZX, XY ; X0 be the the midpoint of Y Z. Then X ′O2 − OY 2 =
X ′X2

0 − Y X2
0 = (z − x/2)2 − (x/2)2 = z(z − x). Similarly Y ′O2 − OX2 = z(z − y).
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Also, X ′I2 = r2 + (z − (p − y))2 = r2 + (p − x)2, Y ′I2 = r2 + (p − y)2. Therefore,
X ′O2 − Y ′O2 = X ′I2 − Y ′I2 = z(y − x).
Now note that A′A, B′B, C ′C are the bisectors of triangle A′B′C ′. Thus, for example,
points Ab, Ba lie on B′C ′, A′C ′ respectively and B′Ab = A′Ba = A′B′. By the lemma
AbBa is perpendicular to the line passing through the circumcenter and the incenter of
triangle A′B′C ′. Lines BcCb and AcCa are also perpendicular to this line, therefore these
three lines are parallel.
Second solution. By previous solution Ba lies on A′C ′, Ca lies on A′B′, Ab and Ac

lie on B′C ′. Since A′Ba = A′B′ and A′Ca = A′C ′, we obtain that B′Ba ∥ C ′Ca, thus
B′Ba/C

′Ca = A′B′/A′C ′ = B′Ab/C
′Ac. Therefore triangles B′AbBa and AcCaC

′ are
similar, ∠BaAbB

′ = ∠CaAcC
′ and AbBa ∥ AcCa. Similarly we prove that BcCb is parallel

to these lines.

7. (D.Shvetsov) The altitudes AA1 and CC1 of a triangle ABC meet at point H. Point HA is
symmetric to H about A. Line HAC1 meets BC at point C ′; point A′ is defined similarly.
Prove that A′C ′||AC.
Solution. Since triangles AHC1 and CHA1 are similar, triangles AHAC1 and CHCA1

are also similar i.e. ∠A′C1B = ∠C ′A1B. Therefore points A1, C1, A′, C ′ are concyclic and
lines A1C1 and A′C ′ are antiparallel wrt angle B. Since A1C1 and AC are also antiparallel,
A′C ′ ∥ AC (fig.7).
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8. (N.Moskvitin) Diagonals of an isosceles trapezoid ABCD with bases BC and AD are
perpendicular. Let DE be the perpendicular from D to AB, and let CF be the perpendicular
from C to DE. Prove that angle DBF is equal to half of angle FCD.
Solution. By condition ∠EDB = 45◦ − (90◦ − ∠A) = ∠A − 45◦ = ∠BDC. Thus
the distances from B to lines DE and DC are equal. Since the trapezoid is isosceles,
the distance from B to DC is equal to the distance from C to AB, which is equal
to the distance from B to line AB parallel to CF . Therefore, BF bisects angle CFE
and ∠BFC = 45◦. Let the perpendicular to BF from F meet BD at point K. Then
∠CFK = ∠CBK = 45◦, thus BFKC is a cyclic quadrilateral and CK ⊥ BC. Since
CF ∥ AB, altitude CK bisects angle FCD, and from cyclic quadrilateral BFKC we
obtain that ∠DBF = ∠KCF = ∠FCD/2 (fig.8).
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9. (a.Zaslavsky) Let ABC be an acute-angled triangle. Construct points A′, B′, C ′ on its
sides BC, CA, AB such that:
- A′B′ ∥ AB;
- C ′C is the bisector of angle A′C ′B′;
- A′C ′ +B′C ′ = AB.

Solution. Let L be a common point of CC ′ and A′B′. Then BC ′/AC ′ = A′L/B′L =
A′C ′/B′C ′ and since A′C ′ + B′C ′ = AB we obtain that BC ′ = C ′A′, AC ′ = C ′B′. Thus
the reflections of C ′ in AC and BC lie on A′B′ and line CC ′ is symmetric to the altitude
from C about the correspondent bisector i.e. CC ′ passes through the orthocenter of the
given triangle (fig.9). The further construction is evident.
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10. (B.Frenkin) The diagonals of a convex quadrilateral divide it into four similar triangles.
Prove that it is possible to inscribe a circle into this quadrilateral.

Solution. Let the diagonals of a quadrilateral ABCD meet at point L. If for example
angle ALB is obtuse, then it is greater than any angle of triangle BLC and two adjacent
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triangles can not be similar. Therefore the diagonals are perpendicular. Now if ∠ABL =
∠CBL then BL is an altitude and a bisector of triangle ABC, thus it is also a median and
AB = BC. Then DL is an altitude and a median of triangle ADC, therefore AD = DC
and the quadrilateral id circumscribed.

If angles ABL and CBL are not equal then their sum is equal to 90◦. If ∠BCL = ∠DCL
then reason as above. Else ABCD is a rectangle with perpendicular diagonals, i.e a square.
Therefore a circle can be inscribed into it.

11. (A.Sokolov) Let H be the orthocenter of an acute-angled triangle ABC. The perpendicular
bisector to segment BH meets BA and BC at points A0, C0 respectively. Prove that the
perimeter of triangle A0OC0 (O is the circumcenter of △ABC) is equal to AC.

Solution. It is known that the reflections of H in the sidelines of a triangle lie on its
circumcircle, i.e. the distances from them to O are equal to the circumradius R. Therefore
the distances from H to points Oa, Oc, symmetric to O about BC and BA, are also equal
to R. Since BOa = BOc = R, points Oa, Oc lie on A0C0. Also BOCOa and BOAOc are
rhombus, thus COa ∥ OB ∥ AOc, i.e. ACOaOc is a parallelogram and OaOc = AC. But
by construction OaOc is equal to the perimeter of A0OC0 (fig.11).
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12. (A.Zaslavxky) Find the maximal number of discs which can be disposed on the plane so
that each two of them have a common point and no three have it.

Answer. 4.

Solution. Consider one from n discs. Let AiBi be its common chords with the remaining
discs. Since three discs do not intersect we obtain that for all i one of arcs AiBi does
not contain the endpoints of the remaining chords. Cutting from each disc the segments
limited by such arcs, we obtain n convex figures, each two of them have a common
boundary. It is known that at most four such figures can exist on the plane. It is clear
that four discs can satisfy the condition.

13. (A.Rudenko, D.Khilko) Let AH1, BH2 and CH3 be the altitudes of a triangle ABC. Point
M is the midpoint of H2H3. Line AM meets H2H1 at point K. Prove that K lies on the
medial line of ABC parallel to AC.
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Solution. Let P be the projection of H3 to AC. Triangle H3PH2 is right-angled, and M is
the midpoint of its hypothenuse, thus MP = MH2 and ∠MPH2 = ∠MH2A. It is known
that ∠ABC = ∠H1H2P = ∠H3H2A, therefore MP ∥ KH2. From this we obtain that
AM
AK

= AP
AH2

. Triangles AH2H3 and ABC are similar, thus AP
AH2

= AH3

AB
. Then AM

AK
= AP

AH2
=

AH3

AB
, and H3M ∥ BK (fig.13). Also ∠H3H2B = 90◦−H3H2A = 90◦−H1H2C = ∠BH2K.

Therefore ∠H2BK = ∠H3H2B = ∠BH2K, and triangle BH2K is isosceles. It is clear
that the medial line parallel to AC is the perpendicular bisector to BH2. Thus it passes
through K.
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14. (A.Myakishev) Let ABC be an acute-angled, nonisosceles triangle. Point A1, A2 are
symmetric to the feet of the internal and the external bisectors of angle A wrt the midpoint
of BC. Segment A1A2 is a diameter of a circle α. Circles β and γ are defined similarly.
Prove that these three circles have two common points.

Solution. It is known that the circles having the feet of internal and external bisectors
as opposite points are perpendicular to the circumcircle. Thus circles α, β, γ symmetric
to them about the diameters of the circumcircles are also perpendicular to it, i.e. the
degrees of the circumcenter O wrt these three circles are equal. Since the midpoints of the
segments between the feet of the bisectors are concurrent, the centers of three circles are
also concurrent by the Menelaos theorem. The perpendicular from O to the correspondent
line is the common radical axis of three circles, therefore they have two common points.

15. (V.Yassinsky) The sidelengths of a triangle ABC are not greater than 1. Prove that
p(1−2Rr) is not greater than 1, where p is the semiperimeter, R and r are the circumradius
and the inradius of ABC.

Solution. Since the area of a triangle with sidelengths a, b, c is equal to abc/4R = pr,
the desired inequality is equivalent to a+ b+ c− abc ≤ 2. But

a+ b+ c− abc = a+ b+ c(1− ab) ≤ a+ b+1− ab = 1+ a+ b(1− a) ≤ 1+ a+1− a = 2.

16. (B.Frenkin) The diagonals of a convex quadrilateral divide it into four triangles. Restore
the quadrilateral by the circumcenters of two adjacent triangles and the incenters of two
mutually opposite triangles.

First solution. Let L be a common point of the diagonals of quadrilateral ABCD; O, I
be the circumcenter and the incenter of triangle LAB; O′ be the circumcenter of triangle
LAD; I ′ be the incenter of triangle LCD. Then OO′ is the perpendicular bisector to LA,
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and II ′ contains the bisector of angle LAB. Thus we can define the directions of lines
LA, LB and construct the perpendicular bisector to LB.

Let X, Y , Z be the midpoints of arcs LA, LB, AB of circle LAB. Then I is the orthocenter
of triangle XY Z and since we know angle ALB we can find angle XIY . Denote this angle
as φ. Now we have to solve next problem.

An angle with vertex O and a point I are given. Construct on the sides of the angle such
points X, Y that OX = OY and ∠XIY = φ.

Take on the sides of the angles two arbitrary points X1, Y1 such that OX1 = OY1 and find
such point I1 on ray OI that ∠X1I1Y1 = φ. The homothety with center O, transforming
I1 to I, transforms X1, Y1 to the desired points. The further construction is evident.

Second solution. In the notations of previous solution it is sufficient to find point L.
In fact OO′ is the perpendicular bisector to AL, and II ′ is the bisector of angle ALB.
Constructing the perpendicular from L to OO′ we find line AL. Reflecting it about II ′

we obtain line BL. Constructing a circle passing through L with center O we find A and
B as its common points with AL and BL. The circle through L with center O′ meets BL
at D. Now construct the circle with center I ′, touching AL and BL, the tangent to this
circle from D meets AL at C.

To find L use the trident theorem: a common point of the perpendicular bisector to a
side of a triangle with its circumcircle lies on equal distances from the incenter and the
endpoints of the side. Take an arbitrary circle ω1 with center O. Let it meet OO′ at point
K. Constructing the perpendicular from K to II ′ and reflecting ω1 about it, we obtain
circle ω2. Let OI meet ω2 at point I1. Reflecting I1 about this perpendicular, we obtain
point L′ on ω1. The homothety with center O, transforming I1 to I, transforms L′ to L.

17. (F.Nilov) Let O be the circumcenter of a triangle ABC. The projections of points D and
X to the sidelines of the triangle lie on lines l and L such that l ∥ XO. Prove that the
angles formed by L and by the diagonals of quadrilateral ABCD are equal.

Solution. By condition D and X lie on the circumcircle of ABC, and l and L are its
Simson lines. Let chords CC ′, DD′ and XX ′ be parallel to AB. By Simson lines properties
l and OX are perpendicular to CD′, and L ⊥ CX ′. Thus we have to prove that arcs X ′D
and X ′C ′ are equal. But these arcs are equal to D′X and CX respectively, and the
equality of these two arcs ic evident (fig.17).
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18. (V.Yassinsky) Let ABCDEF be a cyclic hexagon, points K, L, M , N be the common
points of lines AB and CD, AC and BD, AF and DE, AE and DF respectively. Prove
that if three of these points are collinear then the fourth point lies on the same line.

Solution. Consider a projective map saving the circumcircle and transforming L to its
center. It transforms ABCD and KL to a rectangle and its symmetry axis respectively.
If one of points M , N lies on this axis then E and F are symmetric about it, therefore
the remaining point also lies on KL.

19. (F.Ivlev) Let L and K be the feet of the internal and the external bisector of angle A of
a triangle ABC. Let P be the common point of the tangents to the circumcircle of the
triangle at B and C. The perpendicular from L to BC meets AP at point Q. Prove that
Q lies on the medial line of triangle LKP .

Solution. Since BC is the polar of P wrt the circumcircle ω of triangle ABC we obtain
that P lies on the polar of L. Since the quadruple B, C, L, K is harmonic, K also lies
on the polar of L. Therefore KP is the polar of L wrt ω, and the medial line of triangle
KLP is the radical axis of ω and L. Prove that Q also lies on this axis.

Let M be the midpoint of KL. Since M is the center of circle AKL perpendicular to ω,
M lies on the polar of A. But M also lies on the polar of P , thus AP is the polar of M
wrt ω and the common chord of ω and circle AKL. But LQ is the radical axis of circle
AKL and L, therefore, Q is the common point of three radical axes.

20. (A.Zaslavsky) A circle and an ellipse lying inside it with a focus C are given. Find the
locus of the circumcenters of triangles ABC, where AB is a chord of the circle touching
the ellipse.

Solution. Let CH be an altitude of triangle ABC. Then H lies on the circle having the
greatest axis of the ellipse as diameter. Let O and R be the center and the radius of
the given circle, and O′ be the circumcenter of ABC. Using the cosine law to triangles
AO′O and AO′C, we have R2 = O′A2 + O′O2 − 2O′A · O′O cos∠AO′O, OC2 = O′C2 +
O′O2 − 2O′C · O′O cos∠CO′O. Since O′O ∥ CH and O′A = O′C, we obtain subtracting
the second equality from the first one that R2 −OC2 = 2O′O · CH.
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Let the translation to vector CO transform H to H ′. Then O, H ′ and O′ are collinear and
OH ′ · OO′ = (R2 − OC2)/2 do not depend on AB. Therefore O′ and H ′ are symmetric
about some circle concentric with the given one. Since the locus of points H ′ is a circle,
The desired locus is also a circle.

21. (A.Yakubov) A quadrilateral ABCD is inscribed into a circle ω with center O. Let M1

and M2 be the midpoints of segments AB and CD respectively. Let Ω be the circumcircle
of triangle OM1M2. Let X1 and X2 be the common points of ω and Ω, and Y1 and Y2 the
second common points of Ω with the circumcircles of triangles CDM1 and ABM2. Prove
that X1X2||Y1Y2.

Solution. Let K be a common point of AB and CD. Since angles OM1K and OM2K
are right, OK is a diameter of Ω. Since arcs OX1 and OX2 of this circle are equal it is
sufficient to prove that arcs KY1 and KY2 are also equal, or ∠KM1Y1 = ∠KM2Y2.

Let N1, N2 be the second common points of circles CDM1 and ABM2 with AB and CD
respectively. Then KM1·KN1 = KC·KD = KA·KB, therefore, N1K·N1M1 = N1A·N1B.
Thus the powers of N1 wrt circles Ω and ABM2 are equal, i.e. N1 lies on M2Y2. Similarly
N2 lies on M1Y1 (fig.21). But it is clear that quadrilateral M1M2N2N1 is cyclic, which
yields the desired equality.
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22. (A.Belov-Kanel) The faces of an icosahedron are painted into 5 colors in such a way that
two faces painted into the same color have no common points, even vertices. Prove that
for any point lying inside the icosahedron the sums of the distances from this point to
the red faces and to the blue faces are equal.

Solution. Prove that there exists a unique coloring satisfying the condition. Call the
distance between two faces the minimal number of edges intersecting in the path from
one face to the second one. Then the distance between two opposite faces is equal to
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5. Also there exist 3 faces with distances 1 and 4 from any fixed face, and 6 faces with
distances 2 and 3 from it.

Consider one of red faces. The faces with distances 1 or 2 from it can not be red. If the
opposite face is red, then all remaining faces can not be red. If there exists a red face with
distance 4 from the initial one, then there are only two faces without common vertices with
two red faces. Since these two faces are adjacent only one from them can be red. Finally
only three faces with distance 3 from the considered one can be red simultaneously. Thus
there exists at most four red faces. This is also correct for all remaining colors, therefore
there are exactly four faces of each color. The planes of four monochromatic faces form
a regular tetrahedron. But for any point inside a tetrahedron the sum of the distances
from it to the faces is equal to the altitude of the tetrahedron. This evidently yields the
assertion of the problem.

23. (M.Yagudin) A tetrahedron ABCD is given. The incircles of triangles ABC and ABD
with centers O1, O2, touch AB at points T1, T2. The plane πAB passing through the
midpoint of T1T2 is perpendicular to O1O2. The planes πAC , πBC , πAD, πBD, πCD are
defined similarly. Prove that these six planes have a common point.

Solution. Consider four spheres having those circles as diametral sections. Then for
example πAB is the radical plane of two spheres touching AB, therefore it contains the
radical center of four spheres. The remaining planes also pass through this point.

24. (N.Beluhov) The insphere of a tetrahedron ABCD with center O touches its faces at
points A1, B1, C1 and D1.

a) Let Pa be a point such that its reflections in lines OB,OC and OD lie on plane BCD.
Points Pb, Pc and Pd are defined similarly. Prove that lines A1Pa, B1Pb, C1Pc and D1Pd

concur at some point P .

b) Let I be the incenter of A1B1C1D1 and A2 the common point of line A1I with plane
B1C1D1. Points B2, C2, D2 are defined similarly. Prove that P lies inside A2B2C2D2.

Solution. a) Let Ba be such a point that A1Ba is a diameter in the circumcircle of
△A1C1D1 with center Ob and radius RB. Define Ca, Da, Ob... and so on similarly. Let also
the inscribed sphere of ABCD be ω, and its inradius be r. Finally, denote by da(X) the
distance from a point X to the plane (B1C1D1), and similarly for db(X) and so on.

By symmetry, Ba is the reflection of A1 in BO. So, since the plane (BCD) touches ω,
PaBa also touches ω. Let Q be the projection of Pa in the plane (A1C1D1). We see
that ∠PaBaO = 90 ⇒ △PaQBa ∼ △BaOaO ⇒ db(Pa) : RB = PaBa : r. Analogously,
dc(Pa) : RC = PaCa : r and dd(Pa) : RD = PaDa : r. Since PaBa = PaCa = PaDa (as
tangents to a sphere), this means that the distances from Pa to the faces of the tetrahedron
A1B1C1D1 are in ratios db(Pa) : dc(Pa) : dd(Pa) = RB : RC : RD. Analogous reasoning
shows that the distances from Pb to the corresponding faces of the same tetrahedron are
in ratios RA : RC : RD, and so on for Pc and Pd.

But the locus of the points whose distances to three given planes are in given ratios is a
line trough the intersection of these planes, and the locus of the points whose distances
to two given planes are in given ratio is a plane trough the intersection of these planes.
Thus, the lines A1Pa and B1Pb lie in the same plane and intersect in some point P . By
the loci argument, this point also lies in the lines C1Pc and D1Pd.
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b) Notice that the interior of the tetrahedron A2B2C2D2 is the locus of the points X such
that the four inequalities hold: da(X)+db(X)+dc(X) ≥ 2dd(X), db(X)+dc(X)+dd(X) ≥
2da(X), and so on. This is easy to see using baricentric coordinates with respect to
A1B1C1D1. Indeed, if α, β, γ and δ are the coordinates of some point X, and dA and so
on denote the equal distances from A2 to the three corresponding faces of A1B1C1D1, then
da(X) = βdB+γdC+δdD and so on, yielding 3αdA = db(X)+dc(X)+dd(X)−2da(X) and
so on. Thus, the inequalities hold exactly when α, β, γ and δ are positive, and this happens
exactly when X lies inside A2B2C2D2 (more elementary, but not as simple arguments can
also be applied).

Thus, it suffices to show that RA +RB +RC > 2RD (and so on, symmetrically).

Notice that all faces of the tetrahedron A1B1C1D1 are acute-angled triangles, and the
points Oa, Ob and so on are interior to them (this follows easily from the fact that its
vertices are the tangency points of the inshere with the faces of ABCD). Obviously,
2RA + 2RB + 2RC ≥ B1C1 + C1A1 + A1B1 (as diameters are greater than chords). Let
K,L and M be the midpoints of the sides of △A1B1C1. The point Od lies inside the
quadrilateral, say, A1LKB1 (as it lies inside △KLM), thus A1L+LK +KB1 > A1Od +
OdB1. But A1L + LK + KB1 = 1

2
B1C1 +

1
2
C1A1 +

1
2
A1B1, and the inequality desired

follows.
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