
VI GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN
THE CORRESPONDENCE ROUND. SOLUTIONS

1. (B.Frenkin) (8) Does there exist a triangle, whose side is equal to some its altitude,
another side is equal to some its bisectrix, and the third side is equal to some its median ?

Solution. No, because the greatest side of a triangle is longer than any its median,
bisector or altitude. Indeed, a segment joining a vertex of a triangle with an arbitrary
point of the opposite side is shorter than one of two remaining sides. Thus each median
or bisector is shorter than one of sides and so is shorter than the greatest side. This is
correct also for the altitudes.

2. (D.Shvetsov) (8) Bisectors AA1 and BB1 of a right triangle ABC (∠C = 90◦) meet at a
point I. Let O be the circumcenter of the triangle CA1B1. Prove that OI ⊥ AB.

Solution. Let A2, B2, C2 be the projections of A1, B1, I to AB (fig.2). Since AA1 is
a bisector, we have AA2 = AC. On the other hand, AC2 touches the incircle, thus the
segment A2C2 = AA2−AC2 is equal to the tangent to this circle from C. Similarly B2C2

is equal to the same tangent, i.e. C2 is the midpoint of A2B2. By Phales theorem, C2I
meets segment A1B1 in its midpoint, which coincides with the circumcenter of triangle
CA1B1 because this triangle is right-angled.
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3. (F.Nilov) (8) Points A′, B′, C ′ lie on sides BC, CA, AB of a triangle ABC. For a point
X one has ∠AXB = ∠A′C ′B′ + ∠ACB and ∠BXC = ∠B′A′C ′ + ∠BAC. Prove that
the quadrilateral XA′BC ′ is cyclic.

Solution. Let Y be the common point of circles AB′C ′ и BC ′A′ distinct from C ′. Then
since ∠B′Y C ′ = π − ∠BAC and ∠C ′Y A′ = π − ∠CBA, we obtain that ∠A′Y B′ =
π−∠ACB, i.e. Y lies also on circle CA′B′. Now note that ∠AY B = ∠AY C ′+∠C ′Y B =
∠AB′C ′ + ∠C ′A′B = 2π − ∠C ′B′C − ∠CA′C ′ = ∠ACB + ∠A′C ′B′ = ∠AXB (fig.3).
Similarly ∠BY C = ∠BXC, i.e. X and Y coincide.
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4. (D.Shvetsov) (8) The diagonals of a cyclic quadrilateral ABCD meet in a point N . The
circumcircles of the triangles ANB and CND intersect the sidelines BC and AD for the
second time in points A1, B1, C1, D1. Prove that the quadrilateral A1B1C1D1 is inscribed
into a circle centered at N .

Solution. Since pentagon A1NB1CD is cyclic, we obtain that A1N = B1N , because
respective angles BDA and BCA are equal. Similarly NC1 = ND1. Also ∠NA1A =
∠ACD = ∠ABD = ∠DD1N (fig.4). Thus ND1 = NA1, q.e.d.
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5. (D.Shvetsov) (8–9) A point E lies on altitude BD of triangle ABC, and ∠AEC = 90◦.
Points O1 and O2 are the circumcenters of triangles AEB and CEB; points F , L are the
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midpoints of segments AC and O1O2. Prove that points L, E, F are collinear.
Solution. Note that the medial perpendiculars to segments AE and EC are the medial
lines of triangle AEC, thus they pass through F . So we must prove that FE is the median
of triangle FO1O2. But O1O2 ‖ AC because these two segments are perpendicular to BD.
Let the line passing through E and parallel to AC meet FO1 and FO2 in points X and
Y (fig.5). Since FCEX and FAEY are parallelograms, then XE = FC = FA = EY .
Thus FE is the median of triangles FXY and FO1O2.
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6. (D.Shvetsov) (8–9) Points M and N lie on side BC of a regular triangle ABC (M is
between B and N), and ∠MAN = 30◦. The circumcircles of triangles AMC and ANB
meet at a point K. Prove that line AK passes through the circumcenter of triangle AMN .
Solution. Since ∠BAM + ∠NAC = ∠MAN and AB = AC, the reflection of B in AM
coincides with the reflection of C in AN . Mark this point by L. Now ∠ALM = ∠ABM =
∠ACM , i.e. L lies on circle ACM . Similarly L lies on circle ABN and thus coincdes with
K (fig.6). So ∠KAN = ∠NAC = 30◦ − ∠BAM = 90◦ − ∠NMA. But the theorem
on inscribed angle implies that we have the same angle between line AN and the line
connecting A with the circumcenter of triangle AMN .
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Fig. 6

7. (D.Shvetsov) (8–9) The line passing through vertex B of triangle ABC and perpendicular
to its median BM intersects the altitudes dropped from A and C (or their extensions) in
points K and N . Points O1 and O2 are the circumcenters of triangles ABK and CBN
respectively. Prove that O1M = O2M .

Solution. Consider parallelogram ABCD (fig.7). Since ∠BKA = ∠DKC = ∠BDA,
points A, B, K, D lie on a same circle and O1M ⊥ BD. Similarly O2M ⊥ BD. Also
since triangles ABD and BCD are equal, the distances from their circumcenters to point
M also are equal.
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8. (D.Shvetsov) (8–10) Let AH be an altitude of a given triangle ABC. Points Ib and Ic

are the incenters of triangles ABH and CAH respectively; BC touches the incircle of
triangle ABC at a point L. Find ∠LIbIc.

Solution.We will prove that triangle LIbIc is right-angled and isosceles. Let Lb, Lc be the
projections of Ib, Ic to BC, and rb, rc be the inradii of triangles AHB, AHC (fig.8). Since
these triangles are right-angled, we have rb = (AH+BH−AB)/2, rc = (AH+CH−AC)/2
and rb−rc = (BH−CH)/2−(AB−AC)/2 = (BH−CH)/2−(BL−CL)/2 = LH. Thus
IbLb = LIc = rb, IcLc = LIb = rc, i.e. triangles LIbLb and IcLcL are equal, LIb = LIc and
∠IbLIc = 90◦. So ∠LIbIc = 45◦.
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9. (B.Frenkin) (8–10) A point inside a triangle is called "good" if three cevians passing
through it are equal. Suppose the total number of good points is odd for an isosceles
triangle ABC (AB = BC). Find all possible values of this number.

Solution. Since the reflection of any good point in the altitude from B also is a good
point and the total number of good points is odd, there exists a good point lying on this
altitude. The cevian through this point from A is not shorter than the altitude from A.
Hence the altitude from A is not shorter than the altitude from B and AC ≤ AB. Also
AC can’t be longer than the altitude from B because in that case there exist two good
points on this altitude. Suppose now that some good point doesn’t lie on this altitude. Let
AA′, BB′, CC ′ be respective cevians, and AA1, CC1 be the altitudes. Then A1A

′ = C1C
′

and exactly one of points A′, C ′ lies between the foot of respective altitude and vertex B.
But this implies that respective cevians are shorter than AC. So they are shorter than
BB1 and we obtain a contradiction. Thus there exists exactly one good point.

10. (I.Bogdanov) (8–11) Let three lines forming a triangle ABC be given. Using a two-sided
ruler and drawing at most eight lines, construct a point D on the side AB such that
AD/BD = BC/AC.

Solution. Construct lines a, b, c, parallel to BC, CA, AB and lying at the distance from
them equal to the width of the ruler. Lines a, b, BC, AC form a rhombus, and its diagonal
is the bisector of angle C. Let E be the common point of this bisector with c, and F be
the common point of diagonals of trapezoid formed by lines c, AB, AC and BC (fig.10).
Then EF meets AB in the sought point D.
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11. (B.Frenkin) (8–11) A convex n-gon is split into three convex polygons. One of them has
n sides, the second one has more than n sides, the third one has less than n sides. Find
all possible values of n.

Answer. n = 4 или n = 5.

Solution. It is clear that n > 3. Suppose that n > 5. Then one of three parts of n-gon
has at least n + 1 sides, the second parts has at least n sides, the third part has at least
three sides. If three pairs of the sides of these parts join inside the given polygon then at
most three pairs can form its sides. If two pairs of sides join inside the polygon then at
most four pairs can form its sides. In all cases the total number of sides of parts is not
greater than n+9. If n > 5 this isn’t possible. The examples for n = 4, 5 are given on fig.
11.

Fig. 11

12. (A.Blinkov, Y.Blinkov, M.Sandrikova) (9) Let AC be the greatest leg of a right triangle
ABC, and CH be the altitude to its hypothenuse. The circle of radius CH centered at H
intersects AC in point M . Let a point B′ be the reflection of B with respect to the point
H. The perpendicular to AB erected at B′ meets the circle in a point K. Prove that:

a) B′M ‖ BC;
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b) AK is tangent to the circle.

Solution. a) Let N be an altitude of isosceles triangle CHM . Then CN = NM . Since
BH = B′H and NH ‖ BC, thus the line passing through B′ and parallel to HN meets
AC in point M (Phales theorem).

Second solution. Since ∠CMH = ∠MCH = ∠CBB′ = ∠CB′B = a, points C, H, B′

and M are concyclic. Thus ∠CB′M = ∠CHM = 180◦ − 2a and ∠AB′M = a q.e.d.

b) From the right-angled triangle ABC we have: CH2 = AH · BH. Since B′H = BH
and KH = CH then KH2 = AH ·B′H, i.e. triangles AHK and KHB′ are similar. This
yields the assertion of the problem..

13. (S.Berlov) (9) Given a convex quadrilateral ABCD such that AB = BC. A point K lies
on the diagonal BD, and ∠AKB +∠BKC = ∠A+∠C. Prove that AK ·CD = KC ·AD.

Solution. Let L be a point on BD such that ∠ALB = ∠A. Since triangles ABL and
DBA are similar we have BL · BD = AB2 = BC2. Thus triangles CBL and DBC are
also similar, i.e. ∠BLC = ∠C and L coincides with K. The sought equality clearly follows
from these two similarities.

14. (S.Berlov) (9–10) Given a convex quadrilateral ABCD and a point M on its side AD such
that CM and BM are parallel to AB and CD respectively. Prove that SABCD ≥ 3SBCM .

Solution. Since ∠ABM = ∠BMC = ∠MCD we have SABM/SBMC = AB/MC and
SBMC/SCMD = BM/CD. But triangles ABM and MCD are similar, so these two ratios
are equal and S2

BMC = SABM · SMCD. By Cauchi inequality SBMC ≤ (SABM + SMCD)/2
which is equivalent to the assertion of the problem.

15. (D.Prokopenko, A.Blinkov) (9–11) Suppose AA1, BB1 and CC1 are the altitudes of an
acute-angled triangle ABC, AA1 meets B1C1 in a point K. The circumcircles of triangles
A1KC1 and A1KB1 intersect the lines AB and AC for the second time at points N and
L respectively. Prove that

a) the sum of diameters of these two circles is equal to BC;

b) A1N/BB1 + A1L/CC1 = 1.

Solution. a) Triangles AB1C1, A1BC1 and A1B1C are similar to triangle ABC with
coefficients cos A, cos B, cos C respectively. Thus ∠KA1C1 = ∠KA1B1 = 90◦ − ∠A, and
by sinuses theorem the diameters of circumcircles of triangles AKB1 and A1KC1 are
equal to B1K/ cos A and C1K/ cos A respectively. So their sum is B1C1/ cos A = BC.

b) An equality proved in p.a) can be written as

A1N

sin B
+

A1L

sin C
= BC.

Dividing by BC we obtain sought relation.

16. (F.Nilov) (9–11) A circle touches the sides of an angle with vertex A at points B and C.
A line passing through A intersects this circle in points D and E. A chord BX is parallel
to DE. Prove that XC passes through the midpoint of segment DE.

Solution. Note that ∠BCD = ∠ECX because the respective arcs lie between parallel
chords. Furthermore since ∠ABD = ∠AEB, triangles ABD and AEB are similar and so
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BD/BE = AD/AB. Similarly CD/CE = AD/AB, i.e. BD·CE = CD·BE = BC ·DE/2
(the last equality follows from Ptolomeus theorem).

Now let CX meet DE at point M (fig. 16). Then triangles CBD and CME are similar,
thus BD · CE = CB · EM . From this and previous equalities we obtain EM = ED/2.
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17. (S.Tokarev) (9–11) Construct a triangle, if the lengths of the bisectrix and of the altitude
from one vertex, and of the median from another vertex are given.

First solution. Let l = CL, h = CH be the bisector and the altitude from vertex C,
m = BM be the median from vertex B and φ be the angle of right-angled triangle with
hypothenuse l opposite to cathetus with length h. Let p be the line passing through C
and parallel to AB, and B′ be the reflection of point B in p.

Suppose that triangle ABC is constructed. Then ∠CLB = φ or ∠CLB = 180◦ − φ, and
in both cases ∠B′CM = 2φ. In fact, if ∠CLB = φ, then ∠B′CM = 360◦ − 2∠CBA −
∠BCA = 2(180◦ − ∠CBA− ∠BCL) = 2φ (Fig.17.1). The second case is similar.
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Since ∠B′CM = 2φ we obtain the following construction.

Construct two parallel lines with distance h between them. Let B be a point lying on one
of these lines and p be the second line. Now construct point B′ and point M equidistant
from two lines and such that BM = m. Construct angle φ and two arcs with endpoints
B′ and M equal to 360◦ − 4φ.

If C1 and C2 are the common points of these arcs with line p, and Ai (i = 1, 2) is the
reflection of Ci in M , then each of triangles A1BC1 and A2BC2 is sought.

Indeed, the altitudes of these triangles from C1, C2 are equal to h, and segment BM = m
is their common median. Furthermore if L1, L2 are the feet of respective bisectors then
our construction yields that one of angles C1L1B and C2L2B is equal to φ, and the second
one is equal to 180◦ − φ. Thus by definition of φ we obtain C1L1 = C2L2 = l.

Note. It is evident that if l < h or m < h/2, then the solution doesn’t exist. If l = h and
m ≥ h/2, then the sought triangle is unique and isosceles (if m = h/2 it degenerates to
a segment). When l > h and m = h/2, we obtain two equal triangles symmetric wrt line
BB′.

If l > h and m = l/2 then one of two triangles is degenerated. In all other cases the
problem has two solutions.

Second solution. Having an altitude and a bisector from vertex C, we can construct this
vertex and line AB. Consider now the following map of this line to itself. For an arbitrary
point X find a point Y such that its distances from X and AB are equal to the given
median from B and to the half of the given altitude (fig. 17.2). Now find a common point
X ′ for AB and for the reflection of CY in the bisector. Obviously this map is projective
and B is its fixed point. So we obtain the well-known problem of constructing the fixed
point of a projective map.

A B = X

C

Y

Fig. 17.2

18. (D.Prokopenko) (9–11) A point B lies on a chord AC of a circle ω. Segments AB and
BC are diameters of circles ω1 and ω2 centered at O1 and O2 respectively. These circles
intersect ω for the second time in points D and E respectively. The rays O1D and O2E
meet in a point F , and the rays AD and CE meet in a point G. Prove that line FG
passes through the midpoint of segment AC.

9



Solution. Since ∠ADB = ∠BEC = 90◦, points D and E lie on the circle with diameter
BG. Also ∠FDG = ∠ADO1 = ∠DAC = ∠GED. Thus FD (and similarly FE) touches
this circle (fig. 18). So GF is the symmedian of triangle GED. Since triangle GDE is
similar to triangle GCA, this line is the median of the last triangle.
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Fig. 18

19. (V.Yasinsky, Ukraine) (9–11) A quadrilateral ABCD is inscribed into a circle with center
O. Points P and Q are opposite to C and D respectively. Two tangents drawn to that
circle at these points meet the line AB in points E and F (A is between E and B, B is
between A and F ). Line EO meets AC and BC in points X and Y respectively, and line
FO meets AD and BD in points U and V . Prove that XV = Y U .

Solution. It is sufficient to prove that XO = OY . Indeed, we then similarly have UO =
OV and so XUY V is a parallelogram.

Let EO meet the circle in points P and Q (Fig. 19). The sought equality is equivalent
to (PX; OY ) = (QY ; OX). Projecting line EO to the circle from point C we obtain
an equivalent equality (PA; C ′B) = (QB; C ′A). It is correct because PQ, AB and the
tangent in C ′ concur.
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20. (F.Ivlev) (10) The incircle of an acute-angled triangle ABC touches AB, BC, CA at
points C1, A1, B1 respectively. Points A2, B2 are the midpoints of segments B1C1, A1C1

respectively. Let P be a common point of the incircle and the line CO, where O is the
circumcenter of ABC. Let also A′ and B′ be the second common points of PA2 and PB2

with the incircle. Prove that a common point of AA′ and BB′ lies on the altitude of the
triangle dropped from the vertex C.

Solution. It is sufficient to prove that ∠CAP = ∠A′AB. Indeed, from this we obtain
that line AA′ is the reflection of AP in the bisector of angle A. Similarly line BB′ is the
reflection of BP in the bisector of angle B, and so the common point of these two lines
lies on the reflection of line CP in the bisector of angle C, i.e. on the altitude.

Let Q be the common point of line AP with the incircle and S be the midpoint of
arc B1C1 (fig. 20). Consider the composition f of the projections of incircle to itself
from A and A2. We have f(B1) = C1, f(C1) = B1, f(Q) = A′ and f(S) = S. Thus
(B1Q; SC1) = (C1A

′; SB1), i.e. A′ is the reflection of Q in AA2, which proves the sought
equality.
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21. (A.Akopjan) (10–11) A given convex quadrilateral ABCD is such that ∠ABD+∠ACD >
∠BAC + ∠BDC. Prove that SABD + SACD > SBAC + SBDC .

Solution. If AB ‖ CD then ∠ABD = ∠BDC and ∠ACD = ∠BAC. Thus the given
equality is equivalent to the fact that rays AB and DC intersect, i.e. the distance from C
to line AB is less than the distance from D, and the distance from B to line CD is less
than the distance from A. So SABD > SABC and SACD > SBCD.

22. (A.Zaslavsky) (10–11) A circle centered at a point F and a parabola with focus F have
two common points. Prove that there exist four points A, B, C, D on the circle such that
lines AB, BC, CD and DA touch the parabola.

Solution. Take an arbitrary point A lying on the circle and outside the parabola. Line
AF and the line passing through A and parallel to the axis of parabola intersect the circle
in points symmetric wrt the axis. Thus the tangents from A to the parabola also intersect
the circle in symmetric points B and D. Similarly the second tangents from B and D
intersect the circle in point C symmetric to A. Thus A, B, C, D are the sought points.
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23. (N.Beluhov, Bulgaria) (10–11) A cyclic hexagon ABCDEF is such that AB · CF =
2BC · FA, CD ·EB = 2DE ·BC, and EF ·AD = 2FA ·DE. Prove that lines AD, BE
and CF concur.

Solution. Let P be the common point of FC and AD and G be the second common
point of BP with the circumcircle of the hexagon. Then 2 = (AC; BF ) = (DF ; GB) =
(DF ; EB), and so points G and F coincide.

24. (A.Akopjan) (10–11) Given a line l in the space and a point A not lying on l. For an
arbitrary line l′ passing through A, XY (Y is on l′) is the common perpendicular to the
lines l and l′. Find the locus of points Y .

Solution. Let the plane passing through A and perpendicular to l intersect l in point B.
Let C be the projection of Y to this plane. Hence BC ‖ XY , thus BC ⊥ AY and by
three perpendiculars theorem BC ⊥ AC. So C lies on the circle with diameter AB, and
Y lies on the cylinder constructed over this circle. It is clear that all points of the cylinder
are on the sought locus.

25. (N.Beluhov, Bulgaria) (11) It is known for two different regular icosahedrons that some
six of their vertices are vertices of a regular octahedron. Find the ratio of the edges of
these icosahedrons.

Solution. Note that no icosahedron can contain four vertices of octahedron. Indeed,
between four vertices of octahedron there exist two opposite vertices that together with
each of remaining vertices form an isosceles right-angled triangle . But no three vertices
of icosahedron form such triangle.

Thus one of given icosahedrons contains three vertices lying on one face of octahedron,
and the other icosahedron contains three vertices lying on the opposite face. Now note
that there exist only three different distances between the vertices of icosahedron: one is
equal to the edge, the second is equal to the diagonal of a regular pentagon with the side
equal to the edge, and the third is the distance between two opposite vertices. If three
vertices form a regular triangle then the distance between them is one of two first types.
Since two icosahedrons aren’t equal, then some face of the octahedron is a face for one
of them and a triangle formed by diagonals for the other. Thus the ratio of edges is the

ratio of the diagonal and the side of a regular pentagon, i.e.
√

5 + 1

2
.
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