A Short Proof of Lamoen's Generalization of the Droz-Farny Line Theorem

Cosmin Pohoata and Son Hong Ta

Abstract

We give a short proof of a slightly more general version of the Droz-Farny line theorem mentioned by Floor van Lamoen in [5].

1. The Droz-Farny line theorem and Lamoen's generalization

In 1899, Arnold Droz-Farny discovered the following beautiful result, known nowadays as the Droz-Farny line theorem:

Theorem 1 (Droz-Farny). If two perpendicular straight lines are drawn through the orthocenter of a triangle, they intercept a segment on each of the sidelines. The midpoints of these three segments are collinear.

Figure 1.

As illustrated in Figure 1, we have denoted by A_{1}, B_{1}, C_{1}, and A_{2}, B_{2}, C_{2} the intersections points of the two perpendicular lines d_{1}, d_{2} with the sidelines $B C, C A$, and $A B$, respectively. The Droz-Farny line theorem states that the midpoints A_{3}, B_{3}, C_{3} of the segments $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ are collinear. Despite of the simple configuration, the first known proof is the analytical one from [7]. Years later, on the Hyacinthos forum, several proofs were given by N. Reingold [6], D. Grinberg [2], [3], [4] and M. Stevanovic [8]. In 2004,
J. -L. Ayme ends this sequence of proofs by presenting a beautiful synthetic approach [1]. A month before the apparition of Ayme's article, Lamoen [5] mentioned, without proof, the following generalization:

Theorem 2 (Lamoen). If the midpoints of the intercepted segments are replaced by three points A_{3}, B_{3}, C_{3} dividing into the same ratio the corresponding segments $A_{1} A_{2}, B_{1} B_{2}$, and $C_{1} C_{2}$, then A_{3}, B_{3}, C_{3} remain collinear.

2. Proof of Theorem 2

Denote by e, f the lines through the orthocenter H parallel to $A B, A C$, respectively. Furthermore, denote by x, y the lines through the vertex A parallel to the lines d_{1}, d_{2}, and let X, Y be the intersection points of the sideline $B C$ with x, and y, respectively.

Figure 2.

Since the pencil $\left(H C_{1}, H C_{2}, H B, e\right)$ is the image of $\left(H B_{2}, H B_{1}, f, H C\right)$ under the rotation $\Psi(H,+\pi / 2)$,

$$
\frac{B C_{1}}{B C_{2}}=\frac{C B_{1}}{C B_{2}} \text { if and only if } \frac{B C_{1}}{C B_{1}}=\frac{B C_{2}}{C B_{2}}
$$

and thus, by multyplying with $A C / A B$,

$$
\frac{C_{1} B}{A B} \cdot \frac{A C}{B_{1} C}=\frac{C_{2} B}{A B} \cdot \frac{A C}{B_{2} C}
$$

On other hand, since

$$
\frac{C_{1} B}{A B}=\frac{A_{1} B}{X B}, \quad \frac{A C}{B_{1} C}=\frac{X C}{A_{1} C}, \quad \frac{C_{2} B}{A B}=\frac{A_{2} B}{Y B}, \quad \frac{A C}{B_{2} C}=\frac{Y C}{A_{2} C}
$$

it follows that

$$
\frac{A_{1} B}{A_{1} C}: \frac{X B}{X C}=\frac{A_{2} B}{A_{2} C}: \frac{Y B}{Y C}
$$

which is equivalent with the congruence of the pencils $\left(B, C, A_{1}, X\right)$ and $\left(B, C, A_{2}, Y\right)$. By intersecting now $\left(A B, A C, A A_{1}, A X\right)$ with d_{1} and $\left(A B, A C, A A_{2}, A Y\right)$ with d_{2}, we deduce that

$$
\frac{C_{1} A_{1}}{C_{1} B_{1}}=\frac{C_{2} A_{2}}{C_{2} B_{2}}
$$

the two degenerated triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ being similar.
For a point P denote by \mathbf{P} the vector $\overrightarrow{X P}$, where X is a fixed point in plane of triangle $A B C$. Since $C_{1} A_{1} / C_{1} B_{1}=C_{2} A_{2} / C_{2} B_{2}$, there exist two real numbers k, l, satisfying $k+l=1$, such that

$$
\mathbf{C}_{\mathbf{1}}=k \mathbf{A}_{\mathbf{1}}+l \mathbf{B}_{\mathbf{1}}, \quad \mathbf{C}_{\mathbf{2}}=k \mathbf{A}_{\mathbf{2}}+l \mathbf{B}_{\mathbf{2}} .
$$

On other hand, since A_{3}, B_{3}, C_{3} divide the segments $A_{1} A_{2}, B_{1} B_{2}$, and $C_{1} C_{2}$, respectively, into the same ratio, there exist two real numbers u, v, satisfying $u+v=1$, such that

$$
\mathbf{A}_{\mathbf{3}}=u \mathbf{A}_{\mathbf{1}}+v \mathbf{A}_{\mathbf{2}}, \quad \mathbf{B}_{\mathbf{3}}=u \mathbf{B}_{\mathbf{1}}+v \mathbf{B}_{\mathbf{2}}, \quad \mathbf{C}_{\mathbf{3}}=u \mathbf{C}_{\mathbf{1}}+v \mathbf{C}_{\mathbf{2}}
$$

Therefore,

$$
\begin{aligned}
\mathbf{C}_{\mathbf{3}}=u \mathbf{C}_{\mathbf{1}}+v \mathbf{C}_{\mathbf{2}} & =u\left(k \mathbf{A}_{\mathbf{1}}+l \mathbf{B}_{\mathbf{1}}\right)+v\left(k \mathbf{A}_{\mathbf{2}}+l \mathbf{B}_{\mathbf{2}}\right) \\
& =k\left(u \mathbf{A}_{\mathbf{1}}+v \mathbf{A}_{\mathbf{2}}\right)+l\left(u \mathbf{B}_{\mathbf{1}}+v \mathbf{B}_{\mathbf{2}}\right) \\
& =k \mathbf{A}_{\mathbf{3}}+l \mathbf{B}_{\mathbf{3}}
\end{aligned}
$$

According to the fact that $k+l=1$, this implies that the points A_{3}, B_{3}, C_{3} are collinear. This completes the proof of Theorem 2.

References

[1] J.-L. Ayme, A synthetic proof of the Droz-Farny line theorem, Forum Geom., 4 (2004) 219-224.
[2] D. Grinberg, Hyacinthos messages 6128, 6141, 6245, December 10-11, 2002.
[3] D. Grinberg, Hyacinthos message 7384, July 23, 2003.
[4] D. Grinberg, Hyacinthos message 9845, June 2, 2004.
[5] F. v. Lamoen, Hyacinthos message 10716, October 17, 2004.
[6] N. Reingold, Hyacinthos message 7383, July 22, 2003.
[7] I. Sharygin, Problemas de Geometria, (Spanish translation), Mir Edition, 1986.
[8] M. Stevanovic, Hyacinthos message 9130, January 25, 2004.

Cosmin Pohoata: 318 Walker Hall, Frist Center 3533, Princeton, NJ 08544.
E-mail address: apohoata@princeton.edu
Son Hong Ta: 136 Xuan Thuy Street, Cau Giay District, Hanoi, Vietnam.
E-mail address: april.mathlinks@gmail.com

