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Abstract

We give a short proof of a slightly more general version of the Droz-Farny line theorem
mentioned by Floor van Lamoen in [5].

1. The Droz-Farny line theorem and Lamoen’s generalization

In 1899, Arnold Droz-Farny discovered the following beautiful result, known nowadays as the Droz-Farny
line theorem:

Theorem 1 (Droz-Farny). If two perpendicular straight lines are drawn through the orthocenter of
a triangle, they intercept a segment on each of the sidelines. The midpoints of these three segments are
collinear.

Figure 1.

As illustrated in Figure 1, we have denoted by A1, B1, C1, and A2, B2, C2 the intersections points of
the two perpendicular lines d1, d2 with the sidelines BC, CA, and AB, respectively. The Droz-Farny line
theorem states that the midpoints A3, B3, C3 of the segments A1A2, B1B2, C1C2 are collinear. Despite of
the simple configuration, the first known proof is the analytical one from [7]. Years later, on the Hyacinthos
forum, several proofs were given by N. Reingold [6], D. Grinberg [2], [3], [4] and M. Stevanovic [8]. In 2004,
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J. -L. Ayme ends this sequence of proofs by presenting a beautiful synthetic approach [1]. A month before
the apparition of Ayme’s article, Lamoen [5] mentioned, without proof, the following generalization:

Theorem 2 (Lamoen). If the midpoints of the intercepted segments are replaced by three points A3,
B3, C3 dividing into the same ratio the corresponding segments A1A2, B1B2, and C1C2, then A3, B3, C3

remain collinear.

2. Proof of Theorem 2

Denote by e, f the lines through the orthocenter H parallel to AB, AC, respectively. Furthermore,
denote by x, y the lines through the vertex A parallel to the lines d1, d2, and let X, Y be the intersection
points of the sideline BC with x, and y, respectively.

Figure 2.

Since the pencil (HC1, HC2, HB, e) is the image of (HB2, HB1, f, HC) under the rotation
Ψ(H,+π/2),

BC1

BC2
=
CB1

CB2
if and only if

BC1

CB1
=
BC2

CB2
,

and thus, by multyplying with AC/AB,
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On other hand, since
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it follows that
A1B

A1C
:
XB

XC
=
A2B

A2C
:
Y B

Y C
,

which is equivalent with the congruence of the pencils (B, C, A1, X) and (B, C, A2, Y ). By intersecting
now (AB, AC, AA1, AX) with d1 and (AB, AC, AA2, AY ) with d2, we deduce that

C1A1

C1B1
=
C2A2

C2B2
,

the two degenerated triangles A1B1C1 and A2B2C2 being similar.
For a point P denote by P the vector

−−→
XP , where X is a fixed point in plane of triangle ABC. Since

C1A1/C1B1 = C2A2/C2B2, there exist two real numbers k, l, satisfying k + l = 1, such that

C1 = kA1 + lB1, C2 = kA2 + lB2.

On other hand, since A3, B3, C3 divide the segments A1A2, B1B2, and C1C2, respectively, into the same
ratio, there exist two real numbers u, v, satisfying u+ v = 1, such that

A3 = uA1 + vA2, B3 = uB1 + vB2, C3 = uC1 + vC2.

Therefore,
C3 = uC1 + vC2 = u (kA1 + lB1) + v (kA2 + lB2)

= k (uA1 + vA2) + l (uB1 + vB2)

= kA3 + lB3.

According to the fact that k + l = 1, this implies that the points A3, B3, C3 are collinear. This completes
the proof of Theorem 2.
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