1 Вводная часть

Занятие по этой теме стоит начать с самостоятельных попыток школьников решить задачу 1, после этого перейти к обсуждению основных идей сюжета.

В прошлых главах мы рассматривали понятие степень точки относительно обычных окружностей. А что если мы превратим окружность в точку? Другими словами, будем смотреть на точку как на окружность радиуса 0. Как тогда определить, что такое степень точки относительно такой вырожденной окружности? Итак, есть "окружность" с центром в точке Q и радиусом 0, мы хотим понять, что такое степень произвольной точки P относительно этой окружности. По определению получаем, что степень равна: $PQ^2 - 0^2 = PQ^2$, т. е. просто квадрат расстояния до точки. Таким образом, если, например, на две произвольные точки смотреть как на вырожденные окружности, то их радикальная ось — это просто серединный перпендикуляр(см. рис. 1)! Удивительным образом оказывается, что это простое наблюдение полезно для решения довольно трудных задач. Но начнём с тривиальных фактов. Возьмём три точки произвольные A, B, C, не лежащие на одной прямой, и посмотрим на них как на вырожденные окружности, т. е. окружности радиуса O. В главе XX мы выяснили, что радикальные оси трёх окружностей, центры которых не лежат на одной прямой, пересекаются в одной точке. Для наших вырожденных окружностей A, B, C эта теорема означает, что серединные перпендикуляры в любом треугольнике пересекаются в одной точке. \blacksquare

7 Подчеркнём, что радикальная ось точки и окружности — это прямая, проходящая через середины касательных, проведённых из точки к окружности (см. рис. 2). К тому же, если точка лежит на окружности, то касательная, проведённая в этой точке, является радикальной осью окружености и этой точки (см. рис. 3). Именно эти простые наблюдения являются фундаментом для всего занятия.

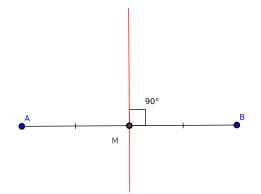


Рис. 1:

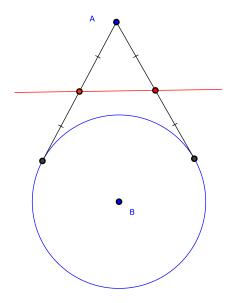


Рис. 2:

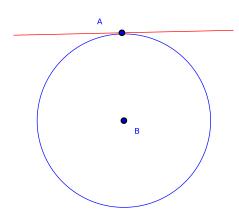


Рис. 3:

2 Задачи для совместного обсуждения

Начнём с совсем простых примеров.

2.1. $AB, AC - \kappa$ асательные κ окружности ω . M, N -середины отрезков AB, AC. P -произвольная точка на прямой MN (рис. 4). Докажите, что PA = PD, где $PD - \kappa$ асательная κ ω .

Доказательство. Рассмотрим две окружности: ω и точку A (окружность с центром в точке A и нулевым радиусом). Тогда MN — радикальная ось этих двух окружностей. Следовательно, точка P лежит на радикальной оси окружности ω и точки A. Тогда степень точки P относительно окружностей равна, т.е. $PA^2 = PD^2$, что и требовалось.

Эта же идея в следующей задаче.

2.2. Дана окружность ω и фиксированная точка A вне окружности. Через точку A проводятся окружности ω' , которые касаются окружности ω в точке B. Касательные, проведённые в точках A и B к окружности ω' , пересекаются в точке M (рис. 5). Докажите, что все точки M лежат на одной прямой.

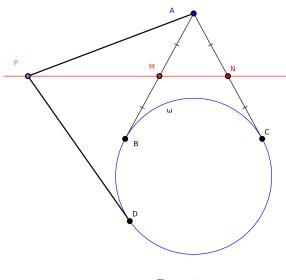


Рис. 4:

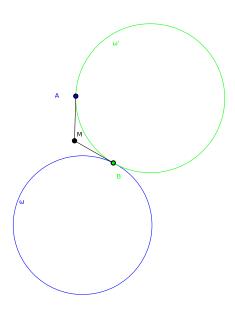


Рис. 5:

Доказательство. Прямая BM, будучи общей касательной, является радикальной осью окружностей ω и ω' . С другой стороны, прямая AM является общей касательной для окружности ω' и вырожденной окружности с центром в точке A радиуса 0. Рассмотрим три окружности: ω , ω' и A(вырожденная окружность). Получаем, что точка M — это точка пересечения двух радикальных осей, следовательно, лежит на радиальной оси фиксированной точки A и окружности ω . Поэтому все точки M лежат на одной прямой.

Рассмотрим ещё один пример со сходной идеей.

2.3 (Кубок им. Колмогорова). Вписанная окружность (I - центр) касается сторон AB, BC, AC в точках C_0 , A_0 , B_0 . Прямая BI пересекает A_0C_0 в точке K(рис. 6). Докажите, что центр описанной окружности треугольника BKB_0 лежит на прямой AC.

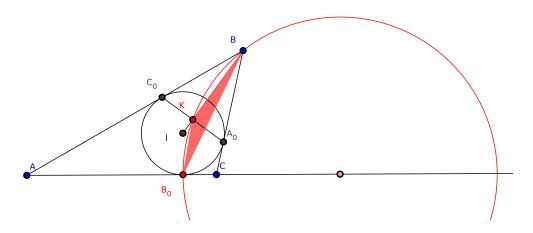


Рис. 6: Центр окружности — пересечение радикальных осей!

Доказательство. Мы знаем, что центр описанной окружности лежит на пересечении серединных перпендикуляров. Оказывается, что этого вполне достаточно. Рассмотрим систему из таких трёх окружностей: вписанная окружность треугольника ABC, точка B и точка B_0 . Тогда для вписанной окружности и точки B радикальная ось — это прямая, проходящая через середины отрезков BC_0 , BA_0 . Но эта прямая, как легко заметить, является серединым перпендикуляром к отрезку BK. Значит центр описанной окружности треугольника BKB_0 лежит на радикальной оси вписанной окружности и точки B. С другой стороны, радикальная ось точек B и B_0 — просто серединный перпендикуляр к отрезку BB_0 . Получается, что центр описанной окружности треугольника BKB_0 является радикальным центром трёх окружностей. Поэтому лежит на радикальной оси вписанной окружности и точки B_0 , т.е. на прямой BC.

В следующих примерах основную идею нужно комбинировать с другими геометрическими методами: счётом углов, подобием, гомотетией и т.д.

2.4. I — инцентр треугольника ABC. Прямая, проходящая через точку I перпендикулярно прямой BI, пересекает прямую AC в точке B_1 (рис. 7). Аналогично определяются точки A_1 , C_1 . Докажите, что точки A_1 , B_1 , C_1 лежат на одной прямой (рис. 8).

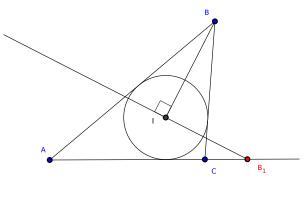


Рис. 7:

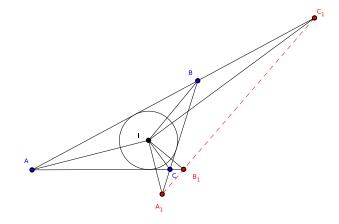


Рис. 8:

Доказательство.

Порой удаётся доказать, что три точки лежат на одной прямой, показав, что каждая из них имеет одинаковую степень относительно двух окружностей. Но пока у нас только одна окружность (вписанная) ?! Да и как считать степень точек A_1, B_1, C_1 относительно вписанной окружности ?! Каждая из точек строится одинаково относительно инцентра I, поэтому в качестве одной из окружностей возьмём

точку I. Тогда, например степень точки B_1 относительно окружности I будет равна B_1I^2 . Какую окружность взять в качестве второй? Вписанная не похдохит, т.к. B_1I^2 больше, чем степень точки B_1 . А вот описанная подойдёт! По теореме о mpunucmhuke центр описанной окружности треугольника AIC лежит на биссектрисе BI (рис. 9).

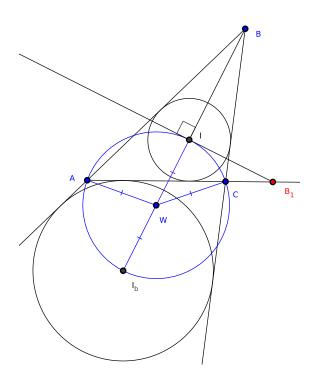


Рис. 9: Помогает трилистник

Следовательно, прямая B_1I касается описанной окружности треугольника AIC. Получаем, что $B_1I^2=B_1C\cdot B_1A$. Но ведь произведение $B_1C\cdot B_1A$ — это степень точки I относительно описанной окружности треугольника ABC. Итак, мы показали, что степень точки B_1 относительно окружности I и описанной окружности треугольника ABC одинакова, т.е. точка B_1 лежит на их радикальной оси. Аналогично, мы можем показать, что и точки A_1 , C_1 лежат на этой же радикальной оси, т.е. точки A_1 , B_1 , C_1 лежат на одной прямой.

Можно было обойтись и без теоремы о трилистнике: непосредственным счётом углов убедиться, что $\triangle AIB_1 \sim \triangle CIB_1$, откуда следует ключевое равенство: $B_1I^2 = B_1C \cdot B_1A$. Отметим, что из нашего доказательства следует перпендикулярность прямых A_1C_1 и OI.

Оказывается, что с помощью идеи вырожденной окружности можно доказать такую классическую теорему.

2.5 (**Лемма Варьера**). Окружность ω касается сторон AB, BC треугольника ABC в точках C_1 , A_1 соответственно и касается внутренним образом описанной окружности в точке T. Докажите, что инцентр I треугольника ABC лежит на прямой A_1C_1 (рис. 10).

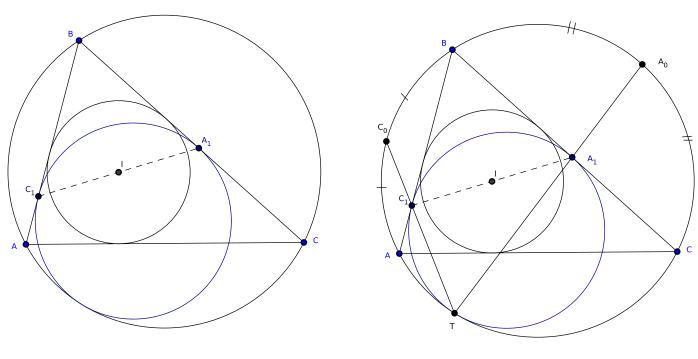
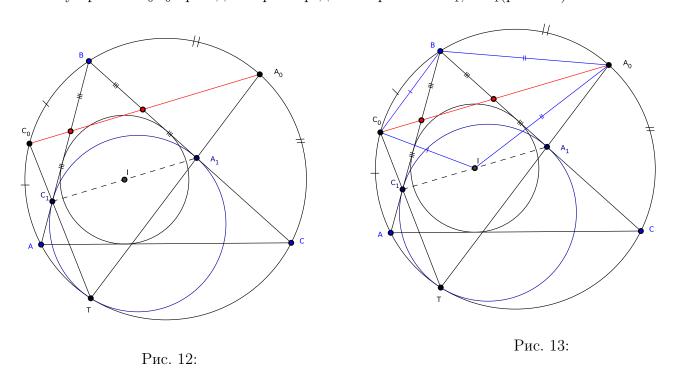


Рис. 10: Лемма Варьера

Рис. 11:

Доказательство. Заметим, что по лемме Архимеда(задача хх, главы хх) прямая TA_1 проходит через середину дуги BC описанной окружности, не содержащей точку A (рис. 11). Аналогично, прямая TC_1 проходит через середину дуги AB, не содержащей вершину C. Обозначим середины этих дуг через A_0 , C_0 соответственно. Напомним, что из той же леммы Архимеда следует, что $A_0B^2 = A_0A_1 \cdot A_0T$. Следовательно, степень точки A_0 одинакова относительно окружности ω и точки B! Аналогичное замечание верно и для точки C_0 . Получаем, что прямая A_0C_0 — радикальная ось точки B и окружности ω . Поэтому прямая A_0C_0 проходит через середины отрезков BA_1 , BC_1 (рис. 12).



Значит, прямая A_0C_0 содержит среднюю линию треугольника C_1BA_1 . Следовательно, образ точки B, при отражении точки B относительно прямой A_0C_0 , лежит на прямой A_1C_1 . С другой стороны, по теореме о трилистнике $IC_0=BC_0$ и $IA_0=BA_0$ (рис. 13). Поэтому точка B при отражении

относительно прямой A_0C_0 переходит в точку I. Откуда и следует, что точка I лежит на прямой A_1C_1 .

Окружность ω называют полувписанной окружностью треугольника ABC. Изучению полувписанных окружностей можно посвятить несколько отдельных занятий.

Рекомендуем ознакомиться с очень обстоятельной подборкой задач "Полувписанная окружность" П. А. Кожевникова в [1].

3 Задачи для самостоятельно решения

3.1. Из точки A, лежащей вне окружности ω , проведены касательные AB, AC (B, $C \in \omega$). E, F — середины отрезков AB, AC соответственно. На прямой EF выбрана произвольная точка D, из которой к ω проводятся касательные DP, DQ (P, $Q \in \omega$). Прямая PQ пересекает прямую EF в точке M. Докажите, что $\angle DAM = 90^\circ$ (puc. 14).

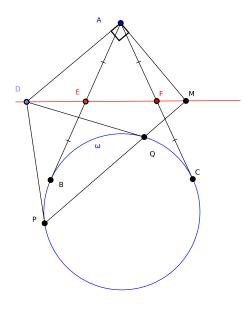


Рис. 14:

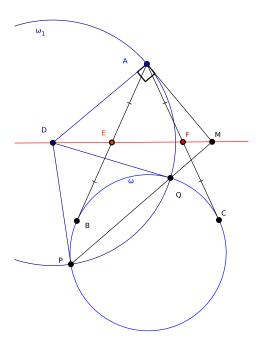
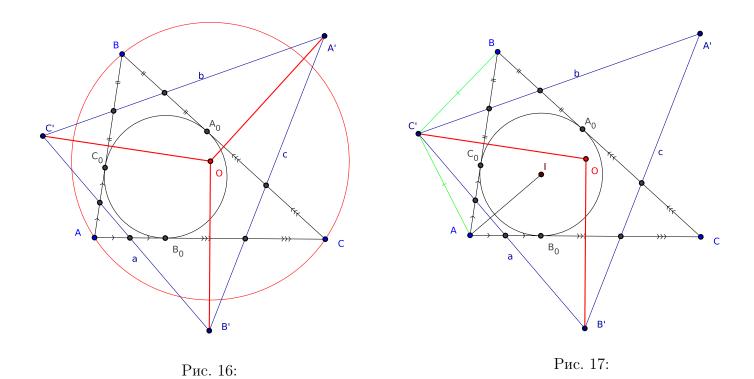


Рис. 15:

Доказательство. Из примера 1 следует, что DP = DQ = DA, т.е. точки P, Q, A лежат на окружности с центром D. Обозначим эту окружность через ω_1 . Теперь остаётся рассмотреть систему из трёх окружностей: точки A, окружности ω и ω_1 . Тогда точка M является радикальным центром этой системы, т.к. лежит на пересечении двух радикальных осей — PQ(радикальная ось ω и ω_1) и EF(радикальная ось точки A и окружности ω). Следовательно, точка M лежит и на радикальной оси точки A и окружности ω_1 , т.е. на касательной, проведённой к ω_1 в точке A. Откуда и следует перпендикулярность AM и AD.

3.2. Вписанная окружность треугольника ABC касается сторон AB, BC, AC в точках C_0 , A_0 , B_0 . Прямая а проходит через середины отрезков AB_0 , AC_0 . Аналогично, определяются прямые b, c. Прямые a, b, c образуют треугольник A'B'C'. Докажите, что центры описанных окружностей треугольников ABC и A'B'C' совпадают(рис. 16).



Доказательство. Рассмотрим систему из трёх окружностей: точки A, B и вписанная окружность. Точка C' — радикальный центр такой системы (почему?). Следовательно, отрезки степени точки C' относительно точек A и B равны, т.е. $C'A^2 = C'B^2$, поэтому C'A = C'B (рис. 17). Пусть O — центр описанной окружности треугольника ABC. Тогда из равенств C'A = C'B и OA = OB заключаем, что $C'O \perp AB$. С другой стороны, прямая a проходит через середины сторон равнобедренного треугольника AB_0C_0 , поэтому $AI \perp AI$, где I — инцентр треугольника ABC. Из полученных перпенедикулярностей следует, что $\angle B'C'O = \angle IAC_0$; аналогично, получаем равенство углов $\angle C'B'O = \angle IAB_0$. Следовательно, в треугольнике OB'C' равны углы $\angle OC'B' = \angle OB'C'$, т.е. OB' = OC'. Аналогично, показываем равенство отрезков OB' и OA', что и требовалось.

3.3 (Петербургская олимпиада, отборочный тур, 2002 год). Вписанная окружность касается сторон AB, BC, CA треугольника ABC в точках C_0 , A_0 и B_0 соответственно. Прямая, перпендикулярная BB_0 и проходящая через B_0 , пересекается с A_0C_0 в точке B_1 . Докажите, что середина отрезка BB_1 лежит на прямой AC (рис. 18).

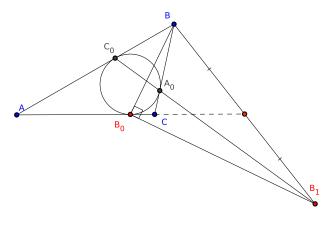


Рис. 18:

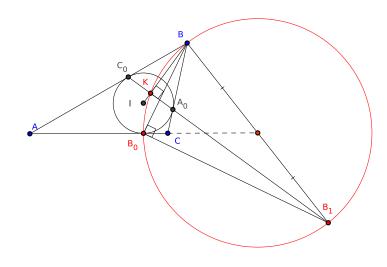
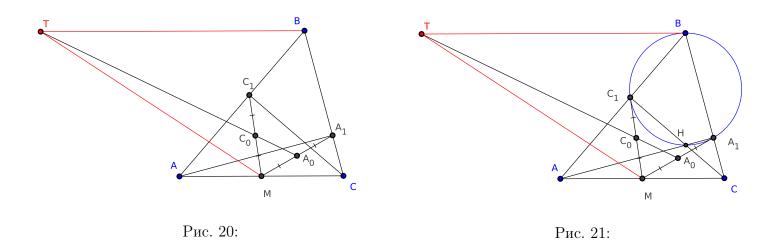


Рис. 19:

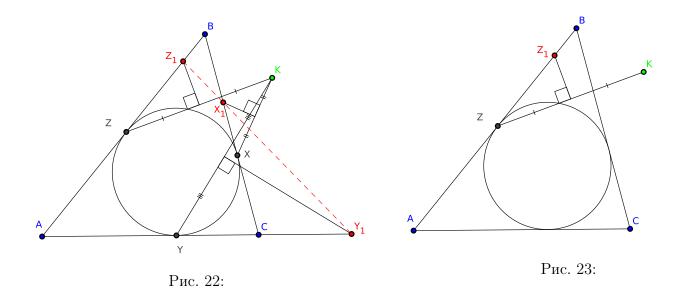
Доказательство. Оказывается, что эта задача просто следует из 2.3. В самом деле, пусть I — инцентр, а точка K — пересечение прямых A_1C_1 и BI (рис. 19). Замечаем, что $\angle BKB_1 = \angle BB_0B_1 = 90^\circ$. Следовательно, точки B, K, B_0, B_1 лежат на одной окружности с диаметром BB_1 , поэтому центр этой окружности — середина отрезка BB_1 . С другой стороны из примера 3 следует, что центр описанной окружности треугольника BKB_0 лежит на прямой AC, что и завершает доказательство.

3.4. В остроугольном треугольнике ABC угол C больше угла A. M — середина стороны AC. A_1 и C_1 основания высот из вершин A и C. A_0 и C_0 середины сторон MA_1 и MC_1 . Прямая A_0C_0 пересекает прямую, проходящую через B параллельно AC, в точке T. Докажите, что TB = TM (рис. 20).



Доказательство. Само условие подсказывает какие окружности нужно искать. Из точки M проведены два отрезка MA_1 и MC_1 и через их середины проводится прямая, на которой и лежит точка T. Поэтому в качестве одной окружности нужно выбрать точку M. Теперь, если мы докажем, что описанная окружность треугольника BA_1C_1 касается прямых MA_1 , MC_1 , TB, то задача будет решена (рис. 21). В самом деле, ведь тогда получится, что точка T лежит на радикальной оси A_0C_0 точки M и описанной окружности BA_1C_1 , а значит TM = TB. Остаётся показть, что описанная окружность треугольника BA_1C_1 касается прямых TB, MA_1 , MC_1 . Точки B, A_1 , C_1 , H лежат на одной окружности (обозначим её ω) с диаметром BH, где H — ортоцентр треугольника ABC. Поэтому прямая TB касается ω . Отрезок C_1M является медианой в прямоугольном треугольнике ACC_1 , поэтому $C_1M = MC$. Следовательно, имеем равенство углов $\angle MC_1C = \angle MCC_1$. С другой стороны, каждый из углов $\angle C_1CM$ и $\angle ABH$ дополняют угол $\angle BAC$ до 90°, откуда следует их равенство. Итак, получаем такую цепочку равенств: $\angle MC_1C = \angle C_1CM = \angle ABH$, из которой следует, что прямая MC_1 в самом деле касается окружности ω . Аналогичное, рассуждение показывает что и прямая MA_1 касается ω . \square

3.5 (**Турнир Городов, 2013 год, Ивлев Ф.**). В треугольник ABC вписана окружность, касающаяся сторон BC, CA и AB в точках X, Y и Z — соответственно. На плоскости отметили точку K. Серединные перпендикуляры к отрезкам KX, KY и KZ пересекают прямые BC, CA и AB в точках X_1 , Y_1 и Z_1 соответственно. Докажите, что точки X_1 , Y_1 и Z_1 лежат на одной прямой (рис. 22).



Доказательство. Понять что-то сразу про три точки X_1, Y_1, Z_1 трудно, поэтому оставим только одну, например Z_1 (рис. 23). Точка Z_1 определяется как пересечение серединного перпендикуляра к ZK и касательной к окружности. Но ведь каждая из этих прямых является радикальной осью! В самом деле, серединный перпендикуляр к отрезку ZZ_1 — радикальная ось вырожденных окружностей Z и Z_1 . А касательная, проведённая к вписанной окружности в точке Z — радикальная ось точки Z и вписанной окружности. Получается, что точка Z_1 является радикальным центром для вписанной окружности и точке Z, Z_1 . Следовательно, точка Z_1 лежит и на радикальной оси вписанной окружности и точки K. Аналогичные наблюдения для точек X_1 , Y_1 завершают доказательство — три точки лежат на одной радикальной оси!

Теперь давайте рассмотрим, пожалуй, самую яркую и трудную задачу этой темы.

3.6 (IMO Shortlist, 2007). Вписанная окружность треугольника ABC касается сторон AB, AC в точках Z, Y соответственно. Прямые BY и CZ пересекаются в точке G. Точки R и S выбираются так, что четырёхугольники BCYR и BCSZ — парамелограммы. Докажите, что GR = GS (рис. 24).

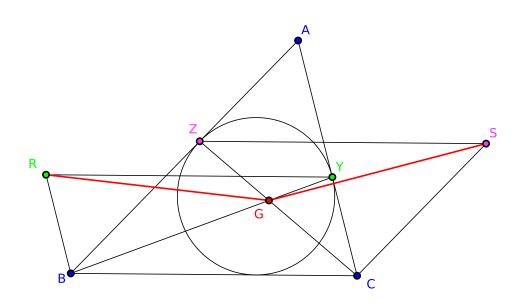


Рис. 24:

Доказательство. В этой задаче самым неожиданном образом возникает вневписанная окружность! Пусть вневписанная окружность касается стороны BC и продолжений сторон AB, AC в точках X, Z, Y соответственно (рис. 25).

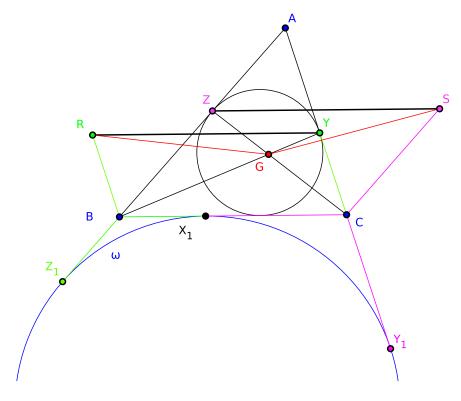


Рис. 25:

Из —равенетва отрезков касательных учения о вписанных и вневписанных окружностях известно, что $CY = BX_1 = BZ_1$. Из параллелограмма CYRB находим, что CY = BR. Таким образом получили равенство отрезков BR и BZ_1 . Следовательно, точка B лежит на радикальной оси точки R и вневписанной окружности. С другой стороны, из параллелограмма BCYR имеем равенство отрезков RY и BC. Отрезок же BC, в свою очередь, равен отрезку YY_1 (это просто следует из счёта отрезков касательных). Поэтому и точка Y лежит на радикальной оси точки R и вневписанной окружности. Итак, мы пришли к тому, что BY является радиальной осью точки R и вневписанной окружности. Аналогично, можно показать, что CZ — радикальная ось точки S и вневписанной окружности. Значит, точка S является радикальным центром для точек S и вневписанной окружности. Получаем, что точка S лежит на радикальной оси точек S и S и вневписанной окружности. Получаем, что точка S лежит на радикальной оси точек S и S и вневписанной окружности. Получаем, что точка S лежит на радикальной оси точек S и S лежит на радикальной оси точек S на на притемальной оси точек S на на притемальной оси точек S и вневписанных на притемальной оси точек S и вневписанных на притемальной оси точек S и вневписанных на притемальной оси точек S на притемальной оси то

Скорее всего, у решить эту задачу самостоятельно не получится. Разбор этой задачи стоит начать с подсказки: "Рассмотрите вневписанную окружность. затем дать некотрое время на поиски решения.

4 Дополнительные задачи

4.1. Из вершины C треугольника ABC проведены касательные CX, CY к окружности, проходящей через середины сторон треугольника. Докажите, что прямые XY, AB и касательная в точке C к окружности, описанной около треугольника ABC, пересекаются в одной точке.

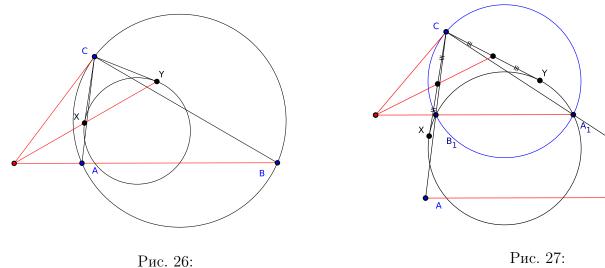


Рис. 27:

Доказательство. Есть касательная к окружности в точке C — одна радикальная ось. Прямая ХУ "почти" радикальная ось. Как из неё сделать настояющую радикальную ось? Достаточно просто выполнить гомотетию с центром в точке C и коэффициентом $\frac{1}{2}$. Действительно, при такой гомотетии прямая XY перейдет в прямую, проходящую через середины отрезков CX, CY (обозначим середины через X_1, Y_1), т.е. в радикальную ось точки C и окружности, которая проходит через середины сторон треугольника ABC (назовём её ω). Обозначим середины отрезков CA и CB через B_1 и A_1 соответственно (рис. 27). При гомотетии окружность ω перейдет в описанную окружность треугольника CA_1B_1 . Заметим, что описанные окружности треугольников ABC и A_1B_1C касаются в точке C, поэтому касательная, проведённая в точке C к описанной окружности треугольника ABC, останется на месте. Остаётся заметить, что прямые X_1Y_1 , A_1B_1 и касательная, проведённая в точке C, являются радикальными осями для точки C, окружности ω и описанной окружности треугольника CA_1B_1 . Следовательно, эти прямые пересекаются в одной точке. Поэтому после обратной гомотетии прямые будут по прежнему пересекаться в одной точке.

Следующую задачу из 323-х участников ММО решили 2 человека.

- **4.2.** Пусть I инцентр $\triangle ABC$. Через A_1 обозначим середину дуги BC описанной окружности треугольника ABC, не содержащей точки A, а через A_2 — середину дуги BAC. Перпендикуляр, опущенный из точки A_1 на прямую A_2I , пересекает прямую BC в точке A' (рис. 28). Аналогично определяются точки B' и C'.
 - а) Докажите, что точки A', B', C' лежат на одной прямой.
- б) Докажите, что эта прямая перпендикулярна прямой OI, где O- центр описанной окружности треугольника АВС.

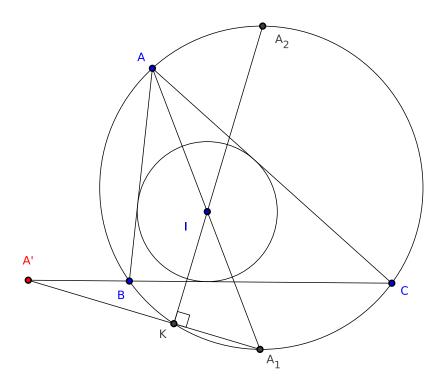


Рис. 28:

Доказательство. Как и во многих задача такого типа, все три точки A', B', C' для поиска решения не нужны, достаточно одной точки A'. Прежде всего заметим, что A_1A_2 — диаметр описанной окружности треугольника ABC (обозначим её через ω), т.к. A_1 и A_2 середины дополнительных дуг. Следовательно, основание перпендикуляра (обозначим K), опущенного из точки A_1 на прямую A_2I , лежит на окружности ω . Заметим, что точка A' является радикальным центром для окружности ω и описанных окружностей треугольников BIC, KIA_1 (рис. 29).

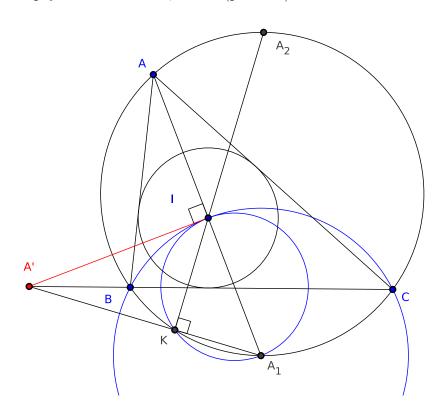


Рис. 29:

По теореме о трилистнике, точка A_1 — центр описанной окружности треугольника BIC. Следова-

тельно, описанные окружности треугольников BIC и KIA_1 касаются в точке I. Поэтому радикальная ось A'I этих окружностей является их общей касательной. По теореме о секущих получаем, что $A'I^2 = A'B \cdot A'C$, т.е. степень точки A' относительно точки I и описанной окружности треугольника ABC одинакова. Точно так же на радикальной оси точки I и описанной окружности лежат точки B' и C'.

Точка K, возникающая по ходу решения, является точкой касания описанной окружности с полувписанной окружностью. Это может служить ещё одним поводом познакомиться с подборкой задач Π . А. Кожевникова в [1].

4.3. P- общая точка двух пересекающихся окружностей ω_1 (O_1- центр) и ω_2 (O_2- центр); AB- общая касательная ($A \in \omega_1$, $B \in \omega_2$). Прямая, проходящая через точку A перпендикулярно прямой BP, пересекает прямую O_1O_2 в точке C. Докажите, что $\angle APC=90^\circ$ (рис. 30).

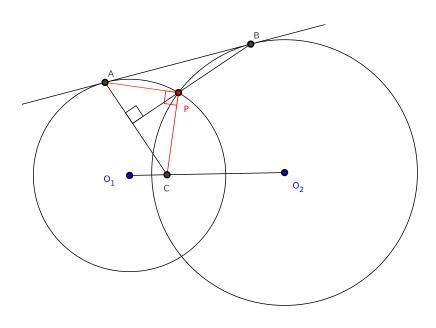


Рис. 30:

Доказательство. На первый взгляд, как и многие вопросы с двумя окружностями, эта задача кажется "углвой что можно просто расписать углы и получить требуемый результат. Однако, попытки расписать углы не приводят к результату (попробуйте?!). Даже если и догадаться, что тут нужна степень точки, то совершенно не ясно как можно подобраться к углу APC и радикальную ось каких окружностей рассматривать?! Основная сложность угла APC состоит в том, что точка C определяется через линию центром O_1O_2 и прямую BP. Линия центров — ось симметрии для двух окружностей. Поэтому, если точка Q — вторая общая точка окружностей ω_1 и ω_2 , то CP = CQ. Нам же нужно показать, что $AP \perp CP$. Другими словами, достаточно показать, что прямая AP касатеся окружности с центром в точке C и радиусом CP = CQ (рис. 31). Обозначим эту окружность через ω .

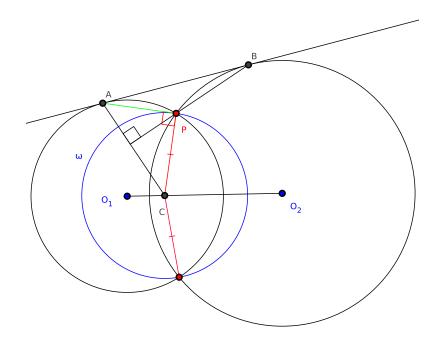


Рис. 31: Появляется спасительная окружность ω

Как мы выяснили в главе XX, прямая PQ проходит через середину отрезка AB. Обозначим эту точку через M. Если рассмотреть систему из трёх окружностей: точки A, окружностей ω_1 и ω , то M, будучи пересечением радикальных осей PQ и AB, является радикальным центром этой системы. Следовательно, точка M лежит на радикальной оси точки A и окружности ω (рис. 32).

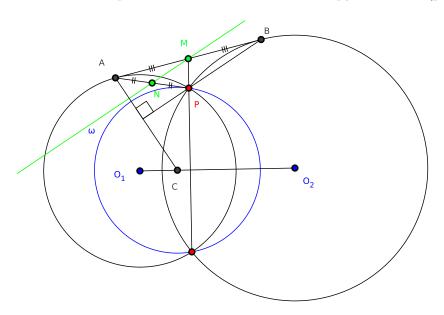


Рис. 32: Появляется спасительная окружность ω

Пусть N — середина отрезка AP, тогда MN — средняя линия треугольника ABP. Поэтому MN||BP, т.е. $MN \perp AC$. Получается, что из точки M, лежащей на радикальной оси окружностей A и ω , опустили перпендикуляр на линию центров окружностей (прямую AC). Следовательно, прямая MN — радикальная ось точки A и окружности ω . Видим, что при гомотетии с центром в точке A и коэффициентом $\frac{1}{2}$ прямая BP переходит в радикальную ось точки A и окружности ω , значит, прямая BP проходит через точки касания касательных, проведённых из точки A к окружности ω .

Список литературы

[1] "Математика в задачах" http://www.mccme.ru/free-books/olymp/matprob.pdf