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Introduction. The following note describes a few uses of a relatively less

known result in plane geometry, the Generalized Ptolemy Theorem (GPT, for

short), also known as Casey's Theorem (see Johnson[1]). Featured will be

two proofs of the problem proposed by India for the 33rd IMO in Moscow

[1993: 255; 1995: 86].

Theorem 1. Circles 
1 and 
2 are externally tangent at a point I, and both

are enclosed by and tangent to a third circle 
. One common tangent to 
1

and 
2 meets 
 in B and C, while the common tangent at I meets 
 in A

on the same side of BC as I. Then I is the incentre of triangle ABC.
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Figure 1.

Proof 1.

Notation: Let tij refer to the length of the external common tangent to circles

i and j (thus the two circles lie on the same side of the tangent). We use the

GPT, which we state in the following manner.

(The GPT) Let circles�, �, , � all touch the circle �, the contacts

being all internal or all external and in the cyclical order �, �, ,

�. Then:

t�� � t� + t� � t�� = t� � t�� :
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Moreover, a converse also holds: if circles �, �, , � are located

such that

� t�� � t� � t�� � t� � t� � t�� = 0

for some combination of +, � signs, then there exists a circle

that touches all four circles, the contacts being all internal or all

external.

For a proof of the GPT and its converse, please refer to [1].
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Figure 2.

Consider the con�guration shown in Figure 2, where x and y are, re-

spectively, the lengths of the tangents from B and C to 
1 and 
2; D is

AI \ BC; z = jAI j; u = jIDj; and a, b, c are the sides of4ABC.

We apply the GPT to the two 4-tuples of circles (A; 
1; B; C) and

(A; 
2; C; B). We obtain:

az + bx = c(2u+ y) (1)

az + cy = b(2u+ x) : (2)

Subtracting (2) from (1) yields bx � cy = u(c � b), so (x + u)=(y + u) =

c=b, that is, BD=DC = AB=AC, which implies that AI bisects \BAC

and that BD = ac=(b + c). Adding (1) and (2) yields az = u(b + c), so

z=u = (b+c)=a, that is, AI=ID = AB=BD, which implies that BI bisects

\ABC. This proves the result.

Proof 2.

Lemma. Let BC be a chord of a circle �, and let S1, S2 be the two arcs of �

cut o� byBC. LetM be the midpoint of S2, and consider all possible circles


 that touch S1 and BC. Then the length tM
 of the tangent from M to 


is constant for all such 
. (See Figure 3.)
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Figure 3.

Proof of Lemma. Let 
 \ � = R, 
 \ BC = S. Applying the GPT to the

4-tuple (B;
; C;M), we �nd: BS � CM + CS � BM = tM
 � BC. Since

BM = CM , we obtain: tM
 = BM , a constant.

Proof of Theorem 1. (See �gure 4.) Let S1, S2 be the two arcs of � cut o� by

chord BC, S1 being the one containing A, and let M denote the midpoint

of S2. Using the above lemma,

tM
1
=MB =MI =MC = tM
2

:

Therefore M has equal powers with respect to 
1 and 
2 and lies on their

radical axis, namely AI. It follows that AI bisects \A of4ABC.
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Next, 4IBM is isosceles, so \IBM = �=2� C=2. Also, \CBM = A=2,

so \IBC = �=2� C=2� A=2 = B=2, that is, IB bisects \B of 4ABC.

It follows that I is the incentre of4ABC.

} } } } }

For non-believers, here are two more illustrations of the power and

economy of the GPT.

Theorem 2. Let4ABC have circumcircle �, and let 
 be a circle lying within

� and tangent to it and to the sides AB (at P ) and AC (at Q). Then the

midpoint of PQ is the incentre of 4ABC. (See Figure 5.)
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Figure 5.

Proof. Let the GPT be applied to the 4-tuple of circles (A;B;
; C). Let

AP = x = AQ. Then:

tAB = c; tA
 = AP = x; tAC = b ;

tB
 = BP = c� x; tBC = a; t
C = CQ = b� x :

The GPT now gives: c(b � x) + (c � x)b = ax, so x = bc=s, where s =

(a+b+c)=2 is the semi-perimeter of4ABC. Let I denote the midpoint of

PQ; then IP = x sinA=2 = (bc=s) sinA=2, and the perpendicular distance

from I to AB is IP cosA=2, which equals (bc=s)
�
sinA=2

��
cosA=2

�
=�

(1=2)bc sinA
�
=s. But this is just the radius of the incircle of4ABC. Since

I is equidistant from AB and AC, it follows that I is the incentre of the

triangle.

The next illustration concerns one of the most celebrated discoveries in

elementary geometry made during the last two centuries.
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Theorem 3. (Feuerbach's Theorem) The incircle and nine-point circle of a

triangle are tangent to one another.

Proof. Let the sides BC, CA, AB of 4ABC have midpoints D, E, F

respectively, and let 
 be the incircle of the triangle. Let a, b, c be the sides

of 4ABC, and let s be its semi-perimeter. We now consider the 4-tuple of

circles (D;E; F;
). Here is what we �nd:

tDE =
c

2
; tDF =

b

2
; tEF =

a

2
;

tD
 =

�
��
�
a

2
� (s� b)

�
��
� =

�
��
�
b� c

2

�
��
� ;

tE
 =

�
�
�
�
b

2
� (s� c)

�
�
�
� =

�
�
�
�
a� c

2

�
�
�
� ;

tF
 =

�
�
�
�
c

2
� (s� a)

�
�
�
� =

�
�
�
�
b� a

2

�
�
�
� :

We need to check whether, for some combination of +, � signs, we have

� c(b� a) � a(b� c) � b(a� c) = 0 :

But this is immediate! It follows from the converse to the GPT that there

exists a circle that touches each of D, E, F and 
. Since the circle passing

throughD, E, F is the nine-point circle of the triangle, it follows that 
 and

the nine-point circle are tangent to one another.

One would surmise that the GPT should provide a neat proof of the

following theorem due to Victor Thebault:

Let 4ABC have circumcircle �, let D be a point on BC, and let


1 and 
2 be the two circles lying within � that are tangent to

� and also to AD and BC. Then the centres of 
1 and 
2 are

collinear with the incentre of4ABC.

I have, however, not been able to �nd such a proof, and I leave the problem to

the interested reader. We note in passing that Thebault's theorem provides

yet another proof of Theorem 1.
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