On The Generalized Ptolemy Theorem

Shailesh Shirali Rishi Valley School, Rishi Valley 517 352, Chittoor Dt., A.P, INDIA

Introduction. The following note describes a few uses of a relatively less known result in plane geometry, the Generalized Ptolemy Theorem (**GPT**, for short), also known as Casey's Theorem (see Johnson[1]). Featured will be two proofs of the problem proposed by India for the 33rd IMO in Moscow [1993: 255; 1995: 86].

Theorem 1. Circles Ω_1 and Ω_2 are externally tangent at a point I, and both are enclosed by and tangent to a third circle Ω . One common tangent to Ω_1 and Ω_2 meets Ω in B and C, while the common tangent at I meets Ω in A on the same side of BC as I. Then I is the incentre of triangle ABC.

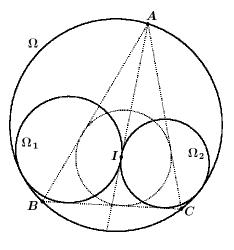


Figure 1.

Proof 1.

Notation: Let t_{ij} refer to the length of the external common tangent to circles i and j (thus the two circles lie on the same side of the tangent). We use the **GPT**, which we state in the following manner.

(The GPT) Let circles α , β , γ , δ all touch the circle Γ , the contacts being all internal or all external and in the cyclical order α , β , γ , δ . Then:

 $t_{\alpha\beta} \cdot t_{\gamma\delta} + t_{\beta\gamma} \cdot t_{\delta\alpha} = t_{\alpha\gamma} \cdot t_{\beta\delta}.$

Moreover, a converse also holds: if circles α , β , γ , δ are located such that

$$\pm t_{\alpha\beta} \cdot t_{\gamma\delta} \pm t_{\alpha\delta} \cdot t_{\beta\gamma} \pm t_{\alpha\gamma} \cdot t_{\beta\delta} = 0$$

for some combination of +, - signs, then there exists a circle that touches all four circles, the contacts being all internal or all external.

For a proof of the **GPT** and its converse, please refer to [1].

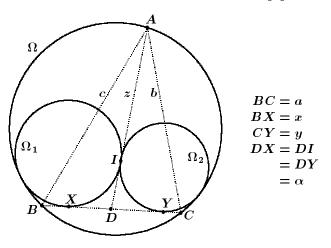


Figure 2.

Consider the configuration shown in Figure 2, where x and y are, respectively, the lengths of the tangents from B and C to Ω_1 and Ω_2 ; D is $AI \cap BC$; z = |AI|; u = |ID|; and a, b, c are the sides of $\triangle ABC$.

We apply the **GPT** to the two 4-tuples of circles (A, Ω_1, B, C) and (A, Ω_2, C, B) . We obtain:

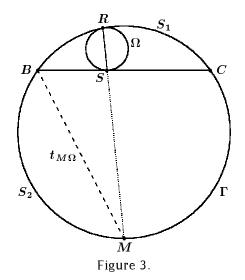
$$az + bx = c(2u + y) \tag{1}$$

$$az + cy = b(2u + x).$$
⁽²⁾

Subtracting (2) from (1) yields bx - cy = u(c - b), so (x + u)/(y + u) = c/b, that is, BD/DC = AB/AC, which implies that AI bisects $\angle BAC$ and that BD = ac/(b + c). Adding (1) and (2) yields az = u(b + c), so z/u = (b+c)/a, that is, AI/ID = AB/BD, which implies that BI bisects $\angle ABC$. This proves the result.

Proof 2.

Lemma. Let *BC* be a chord of a circle Γ , and let S_1 , S_2 be the two arcs of Γ cut off by *BC*. Let *M* be the midpoint of S_2 , and consider all possible circles Ω that touch S_1 and *BC*. Then the length $t_{M\Omega}$ of the tangent from *M* to Ω is constant for all such Ω . (See Figure 3.)



Proof of Lemma. Let $\Omega \cap \Gamma = R$, $\Omega \cap BC = S$. Applying the **GPT** to the 4-tuple (B, Ω, C, M) , we find: $BS \cdot CM + CS \cdot BM = t_{M\Omega} \cdot BC$. Since BM = CM, we obtain: $t_{M\Omega} = BM$, a constant.

Proof of Theorem 1. (See figure 4.) Let S_1 , S_2 be the two arcs of Γ cut off by chord BC, S_1 being the one containing A, and let M denote the midpoint of S_2 . Using the above lemma,

$$t_{M\Omega_1} = MB = MI = MC = t_{M\Omega_2}.$$

Therefore M has equal powers with respect to Ω_1 and Ω_2 and lies on their radical axis, namely AI. It follows that AI bisects $\angle A$ of $\triangle ABC$.

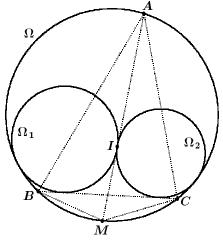


Figure 4.

Next, $\triangle IBM$ is isosceles, so $\angle IBM = \pi/2 - C/2$. Also, $\angle CBM = A/2$, so $\angle IBC = \pi/2 - C/2 - A/2 = B/2$, that is, *IB* bisects $\angle B$ of $\triangle ABC$. It follows that *I* is the incentre of $\triangle ABC$.

$$\diamond \quad \diamond \quad \diamond \quad \diamond \quad \diamond \quad \diamond$$

For non-believers, here are two more illustrations of the power and economy of the **GPT**.

Theorem 2. Let $\triangle ABC$ have circumcircle Γ , and let Ω be a circle lying within Γ and tangent to it and to the sides AB (at P) and AC (at Q). Then the midpoint of PQ is the incentre of $\triangle ABC$. (See Figure 5.)

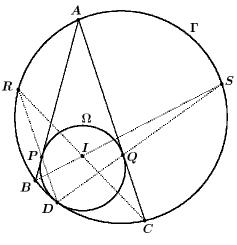


Figure 5.

Proof. Let the **GPT** be applied to the 4-tuple of circles (A, B, Ω, C) . Let AP = x = AQ. Then:

$$t_{AB} = c, \ t_{A\Omega} = AP = x, \ t_{AC} = b,$$

 $t_{B\Omega} = BP = c - x, \ t_{BC} = a, \ t_{\Omega C} = CQ = b - x.$

The **GPI** now gives: c(b-x) + (c-x)b = ax, so x = bc/s, where s = (a+b+c)/2 is the semi-perimeter of $\triangle ABC$. Let *I* denote the midpoint of *PQ*; then $IP = x \sin A/2 = (bc/s) \sin A/2$, and the perpendicular distance from *I* to *AB* is $IP \cos A/2$, which equals $(bc/s)(\sin A/2)(\cos A/2) = ((1/2)bc \sin A)/s$. But this is just the radius of the incircle of $\triangle ABC$. Since *I* is equidistant from *AB* and *AC*, it follows that *I* is the incentre of the triangle.

The next illustration concerns one of the most celebrated discoveries in elementary geometry made during the last two centuries.

Theorem 3. (Feuerbach's Theorem) The incircle and nine-point circle of a triangle are tangent to one another.

Proof. Let the sides BC, CA, AB of $\triangle ABC$ have midpoints D, E, F respectively, and let Ω be the incircle of the triangle. Let a, b, c be the sides of $\triangle ABC$, and let s be its semi-perimeter. We now consider the 4-tuple of circles (D, E, F, Ω) . Here is what we find:

$$t_{DE} = \frac{c}{2}, \quad t_{DF} = \frac{b}{2}, \quad t_{EF} = \frac{a}{2},$$
$$t_{D\Omega} = \left|\frac{a}{2} - (s - b)\right| = \left|\frac{b - c}{2}\right|,$$
$$t_{E\Omega} = \left|\frac{b}{2} - (s - c)\right| = \left|\frac{a - c}{2}\right|,$$
$$t_{F\Omega} = \left|\frac{c}{2} - (s - a)\right| = \left|\frac{b - a}{2}\right|.$$

We need to check whether, for some combination of +, - signs, we have

$$\pm c(b-a) \pm a(b-c) \pm b(a-c) = 0.$$

But this is immediate! It follows from the converse to the **GPT** that there exists a circle that touches each of D, E, F and Ω . Since the circle passing through D, E, F is the nine-point circle of the triangle, it follows that Ω and the nine-point circle are tangent to one another.

One would surmise that the **GPT** should provide a neat proof of the following theorem due to Victor Thebault:

Let $\triangle ABC$ have circumcircle Γ , let D be a point on BC, and let Ω_1 and Ω_2 be the two circles lying within Γ that are tangent to Γ and also to AD and BC. Then the centres of Ω_1 and Ω_2 are collinear with the incentre of $\triangle ABC$.

I have, however, not been able to find such a proof, and I leave the problem to the interested reader. We note in passing that Thebault's theorem provides yet another proof of Theorem 1.

References:

[1] R.A. Johnson, Advanced Euclidean Geometry, Dover, 1960.

Acknowledgements:

I thank the referee for making several valuable comments that helped tidy up the presentation of the paper.

 \vee